Performance
Storage Devices, Queueing Theory

October 24, 2018
Prof. Ion Stoica
http://cs162.eecs.Berkeley.edu
Review: Basic Performance Concepts

- **Response Time or Latency**: Time to perform an operation

- **Bandwidth or Throughput**: Rate at which operations are performed (op/s)
 - Files: NB/s, Networks: Mb/s, Arithmetic: GFLOP/s

- **Start up or “Overhead”**: time to initiate an operation

- Most I/O operations are roughly linear in n bytes
 - $\text{Latency}(n) = \text{Overhead} + n/\text{Bandwidth}$
Example (Fast Network)

- Consider a 1 Gb/s link \(B = 125 \text{ MB/s} \)
 - With a startup cost \(S = 1 \text{ ms} \)

 \[
 \text{Latency}(n) = S + \frac{n}{B} \\
 \text{Bandwidth} = \frac{n}{S + \frac{n}{B}} = \frac{B \cdot n}{B \cdot S + n} = \frac{B}{B \cdot S/n + 1}
 \]
Example (Fast Network)

- Consider a 1 Gb/s link \(B = 125 \text{ MB/s} \)
 - With a startup cost \(S = 1 \text{ ms} \)

 \[
 \text{Bandwidth} = \frac{B}{B*S/n + 1}
 \]
 - half-power point occurs at \(n = S*B \) \(\Rightarrow \) Bandwidth = \(B/2 \)
Example: at 10 ms startup (like Disk)

Performance of gbps link with 10 ms startup

Latency (us) vs. Length (b)

Bandwidth (mB/s) vs. Length (b)

n = 1,250,000 bytes!
What Determines Peak BW for I/O?

• Bus Speed
 – PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
 – ULTRA WIDE SCSI: 40 MB/s
 – Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s full duplex (200 MB/s)
 – USB 3.0 – 5 Gb/s
 – Thunderbolt 3 – 40 Gb/s

• Device Transfer Bandwidth
 – Rotational speed of disk
 – Write / Read rate of NAND flash
 – Signaling rate of network link

• Whatever is the bottleneck in the path…
Storage Devices

• Magnetic disks
 – Storage that rarely becomes corrupted
 – Large capacity at low cost
 – Block level random access (except for SMR – later!)
 – Slow performance for random access
 – Better performance for sequential access

• Flash memory
 – Storage that rarely becomes corrupted
 – Capacity at intermediate cost (5-20x disk)
 – Block level random access
 – Good performance for reads; worse for random writes
 – Erasure requirement in large blocks
 – Wear patterns issue
The Amazing Magnetic Disk

- Unit of Transfer: Sector
 - Ring of sectors form a track
 - Stack of tracks form a cylinder
 - Heads position on cylinders

- Disk Tracks ~ 1 µm (micron) wide
 - Wavelength of light is ~ 0.5 µm
 - Resolution of human eye: 50 µm
 - 100K tracks on a typical 2.5” disk

- Separated by unused guard regions
 - Reduces likelihood neighboring tracks are corrupted during writes (still a small non-zero chance)
Review: Magnetic Disks

• Cylinders: all the tracks under the head at a given point on all surface

• Read/write data is a three-stage process:
 – Seek time: position the head/arm over the proper track
 – Rotational latency: wait for desired sector to rotate under r/w head
 – Transfer time: transfer a block of bits (sector) under r/w head

Seek time = 4-8ms
One rotation = 1-2ms
(3600-7200 RPM)
Review: Magnetic Disks

- **Cylinders:** all the tracks under the head at a given point on all surface

- Read/write data is a three-stage process:
 - **Seek time:** position the head/arm over the proper track
 - **Rotational latency:** wait for desired sector to rotate under r/w head
 - **Transfer time:** transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time + Seek Time + Rotation Time + Xfer Time
Disk Performance Example

• Assumptions:
 – Ignoring queuing and controller times for now
 – Avg seek time of 5ms,
 – 7200RPM ⇒ Time for rotation: 60000 (ms/minute) / 7200(rev/min) \(\approx\) 8ms
 – Transfer rate of 4MByte/s, sector size of 1 Kbyte ⇒
 \(1024 \text{ bytes/}4\times10^6 \text{ (bytes/s)} = 256 \times 10^{-6} \text{ sec} \approx .26 \text{ ms}\)

• Read sector from random place on disk:
 – Seek (5ms) + Rot. Delay (4ms) + Transfer (0.26ms)
 – \textit{Approx} 10ms to fetch/put data: \textbf{100 KByte/sec}

• Read sector from random place in same cylinder:
 – Rot. Delay (4ms) + Transfer (0.26ms)
 – \textit{Approx} 5ms to fetch/put data: \textbf{200 KByte/sec}

• Read next sector on same track:
 – Transfer (0.26ms): \textbf{4 MByte/sec}

• Key to using disk effectively (especially for file systems) is to \textit{minimize seek and rotational delays}
(Lots of) Intelligence in the Controller

- Sectors contain sophisticated error correcting codes
 - Disk head magnet has a field wider than track
 - Hide corruptions due to neighboring track writes

- Sector sparing
 - Remap bad sectors transparently to spare sectors on the same surface

- Slip sparing
 - Remap all sectors (when there is a bad sector) to preserve sequential behavior

- Track skewing
 - Sector numbers offset from one track to the next, to allow for disk head movement for sequential ops

- ...
Solid State Disks (SSDs)

- 1995 – Replace rotating magnetic media with non-volatile memory (battery backed DRAM)
- 2009 – Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
 - Sector (4 KB page) addressable, but stores 4-64 “pages” per memory block
 - Trapped electrons distinguish between 1 and 0
- No moving parts (no rotate/seek motors)
 - Eliminates seek and rotational delay (0.1-0.2ms access time)
 - Very low power and lightweight
 - Limited “write cycles”
- Rapid advances in capacity and cost ever since!
SSD Architecture – Reads

Read 4 KB Page: ~25 usec
– No seek or rotational latency
– Transfer time: transfer a 4KB page
 » SATA: 300-600MB/s => ~4 x 10^3 b / 400 x 10^6 bps => 10 us
– Latency = Queuing Time + Controller time + Xfer Time
– Highest Bandwidth: Sequential OR Random reads
SSD Architecture – Writes

• Writing data is complex! (~200μs – 1.7ms)
 – Can only write empty pages in a block
 – Erasing a block takes ~1.5ms
 – Controller maintains pool of empty blocks by coalescing used pages (read, erase, write), also reserves some % of capacity
• Rule of thumb: writes 10x reads, erasure 10x writes

Amusing calculation: is a full Kindle heavier than an empty one?

- Actually, “Yes”, but not by much
- Flash works by trapping electrons:
 - So, erased state lower energy than written state
- Assuming that:
 - Kindle has 4GB flash
 - $\frac{1}{2}$ of all bits in full Kindle are in high-energy state
 - High-energy state about 10^{-15} joules higher
 - Then: Full Kindle is 1 attogram (10^{-18} gram) heavier
 (Using $E = mc^2$)
- Of course, this is less than most sensitive scale can measure
 (it can measure 10^{-9} grams)
- Of course, this weight difference overwhelmed by battery discharge, weight from getting warm,
SSD Summary

• Pros (vs. hard disk drives):
 – Low latency, high throughput (eliminate seek/rotational delay)
 – No moving parts:
 » Very light weight, low power, silent, very shock insensitive
 – Read at memory speeds (limited by controller and I/O bus)

• Cons
 – Small storage (0.1-0.5x disk), expensive (3-20x disk)
 » Hybrid alternative: combine small SSD with large HDD
SSD Summary

• Pros (vs. hard disk drives):
 – Low latency, high throughput (eliminate seek/rotational delay)
 – No moving parts:
 » Very light weight, low power, silent, very shock insensitive
 – Read at memory speeds (limited by controller and I/O bus)

• Cons
 – Small storage (0.1–0.5x disk), expensive (3-20x disk)
 » Hybrid alternative: combine small SSD with large HDD
 – Asymmetric block write performance: read pg/erase/write pg
 » Controller garbage collection (GC) algorithms have major effect on performance
 – Limited drive lifetime
 » 1-10K writes/page for MLC NAND
 » Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!
Seagate Enterprise

10 TB (2016)
- 7 platters, 14 heads
- 7200 RPMs
- 6 Gbps SATA / 12Gbps SAS interface
- 220MB/s transfer rate, cache size: 256MB
- Helium filled: reduce friction and power usage
- Price: $500 ($0.05/GB)

IBM Personal Computer/AT (1986)
- 30 MB hard disk
- 30-40ms seek time
- 0.7-1 MB/s (est.)
- Price: $500 ($17K/GB, 340,000x more expensive !!)
Largest SSDs

- 60TB (2016)
- Dual port: 16Gbs
- Seq reads: 1.5GB/s
- Seq writes: 1GB/s
- Random Read Ops (IOPS): 150K
- Price: ~ $20K ($0.33/GB)
I/O Performance

Response Time = Queue + I/O device service time

- Performance of I/O subsystem
 - Metrics: Response Time, Throughput
 - Effective BW per op = transfer size / response time
 - $\text{EffBW}(n) = \frac{n}{S + \frac{n}{B}} = \frac{B}{1 + \frac{SB}{n}}$

Graph:
- X-axis: Throughput (Utilization) (% total BW)
- Y-axis: Response Time (ms)

Fixed overhead

of ops

time per op

10/24/18

CS162 © UCB Fall 2018

Lec 17.21
I/O Performance

Response Time = Queue + I/O device service time

- Performance of I/O subsystem
 - Metrics: Response Time, Throughput
 - Effective BW per op = transfer size / response time
 - \(\text{EffBW}(n) = \frac{n}{S + \frac{n}{B}} = \frac{B}{1 + SB/n} \)
 - Contributing factors to latency:
 - Software paths (can be loosely modeled by a queue)
 - Hardware controller
 - I/O device service time

- Queuing behavior:
 - Can lead to big increases of latency as utilization increases
 - Solutions?
A Simple Deterministic World

- Assume requests arrive at regular intervals, take a fixed time to process, with plenty of time between ...
- Service rate ($\mu = 1/T_S$) - operations per sec
- Arrival rate: ($\lambda = 1/T_A$) - requests per second
- Utilization: $U = \lambda / \mu$, where $\lambda < \mu$
- Average rate is the complete story
What does the queue wait time look like?

- Grows unbounded at a rate \(\sim \left(\frac{T_s}{T_A} \right) \) till request rate subsides
A Bursty World

- Requests arrive in a burst, must queue up till served
- Same average arrival time, but almost all of the requests experience large queue delays
- Even though average utilization is low
So how do we model the burstiness of arrival?

- Elegant mathematical framework if you start with *exponential distribution*
 - Probability density function of a continuous random variable with a mean of $1/\lambda$
 - $f(x) = \lambda e^{-\lambda x}$
 - “Memoryless”

Likelihood of an event occurring is independent of how long we’ve been waiting

- Lots of short arrival intervals (i.e., high instantaneous rate)
- Few long gaps (i.e., low instantaneous rate)
Background: General Use of Random Distributions

- Server spends variable time (T) with customers
 - Mean (Average) \(m = \sum p(T) \times T \)
 - Variance (stddev\(^2\)) \(\sigma^2 = \sum p(T) \times (T-m)^2 = \sum p(T) \times T^2 - m^2 \)
 - Squared coefficient of variance: \(C = \frac{\sigma^2}{m^2} \)

Aggregate description of the distribution

- Important values of \(C \):
 - No variance or deterministic \(\Rightarrow C=0 \)
 - “Memoryless” or exponential \(\Rightarrow C=1 \)
 » Past tells nothing about future
 » Poisson process – purely or completely random process
 » Many complex systems (or aggregates) are well described as memoryless
 - Disk response times \(C \approx 1.5 \) (majority seeks < average)
Administrivia

- Midterm 2 coming up on Mon 10/29 5:00-6:30PM
 - All topics up to and including Lecture 17
 » Focus will be on Lectures 11 – 17 and associated readings
 » Projects 1 and 2
 » Homework 0 – 2
 - Closed book
 - 2 pages hand-written notes both sides
BREAK
Introduction to Queuing Theory

• What about queuing time??
 – Let’s apply some queuing theory
 – Queuing Theory applies to long term, steady state behavior ⇒
 Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution
Little’s Law

- In any **stable** system
 - Average arrival rate = Average departure rate
- The average number of jobs/tasks in the system \((N)\) is equal to arrival time / throughput \((\lambda)\) times the response time \((L)\)
 - \(N\) (jobs) = \(\lambda\) (jobs/s) \(\times\) \(L\) (s)
- Regardless of structure, bursts of requests, variation in service
 - Instantaneous variations, but it washes out in the average
 - Overall, requests match departures
\[\lambda = 1 \]
\[L = 5 \]

\[A: N = \lambda \times L \]
- E.g., \(N = \lambda \times L = 5 \)
Little’s Theorem: Proof Sketch

- $L(i) =$ response time of job i
- $N(t) =$ number of jobs in system at time t
- $N(t)$
- $L(i)$
- T
- L
- N
- Departures
- Arrivals
- λ
Little’s Theorem: Proof Sketch

- $L(i) = \text{response time of job } i$
- $N(t) = \text{number of jobs in system at time } t$

What is the system occupancy, i.e., average number of jobs in the system?
Little’s Theorem: Proof Sketch

- **L(i)** = response time of job \(i \)
- **N(t)** = number of jobs in system at time \(t \)
- **S(i)** = **L(i)** * 1 = **L(i)**

\[S = S(1) + S(2) + \ldots + S(k) = L(1) + L(2) + \ldots + L(k) \]
Little’s Theorem: Proof Sketch

- **L(i)** = response time of job *i*
- **N(t)** = number of jobs in system at time *t*
- **S(i)** = **L(i)** * 1 = **L(i)**

Average occupancy (**N_avg**) = **S**/**T**
Little’s Theorem: Proof Sketch

- $L(i) = \text{response time of job } i$
- $N(t) = \text{number of jobs in system at time } t$
- $S(i) = L(i) \times 1 = L(i)$

$$\text{Navg} = \frac{S}{T} = \frac{(L(1) + \ldots + L(k))}{T}$$
Little’s Theorem: Proof Sketch

- $L(i)$ = response time of job i
- $N(t)$ = number of jobs in system at time t
- $S(i) = L(i) \times 1 = L(i)$

$N_{\text{avg}} = \frac{(L(1) + \ldots + L(k))}{T} = \frac{N_{\text{total}}/T}{N_{\text{total}}} \times (L(1) + \ldots + L(k))/N_{\text{total}}$
Little’s Theorem: Proof Sketch

- **L(i)** = response time of job i
- **N(t)** = number of jobs in the system at time t
- **S(i)** = **L(i)** * 1 = **L(i)**

\[
N_{\text{avg}} = \frac{(N_{\text{total}}/T) \times (L(1) + \ldots + L(k))}{N_{\text{total}}} = \lambda_{\text{avg}} \times L_{\text{avg}}
\]
Little’s Theorem: Proof Sketch

L(i) = response time of job *i*

N(t) = number of jobs in system at time *t*

S(i) = **L(i)** * 1 = **L(i)**

\[
N_{avg} = \lambda_{avg} \times L_{avg}
\]
A Little Queuing Theory: Some Results (1/2)

- **Assumptions:**
 - System in equilibrium; No limit to the queue
 - Time between successive arrivals is random and memoryless

- **Parameters that describe our system:**
 - λ: mean number of arriving customers/second
 - T_{ser}: mean time to service a customer ("m")
 - C: squared coefficient of variance $= \sigma^2/m^2$
 - μ: service rate $= 1/T_{ser}$
 - u: server utilization ($0 \leq u \leq 1$): $u = \lambda/\mu = \lambda \times T_{ser}$

- **Parameters we wish to compute:**
 - T_q: Time spent in queue
 - L_q: Length of queue $= \lambda \times T_q$ (by Little’s law)
A Little Queuing Theory: Some Results (2/2)

- Parameters that describe our system:
 - \(\lambda \): mean number of arriving customers/second \(\lambda = \frac{1}{T_A} \)
 - \(T_{ser} \): mean time to service a customer (“m”)
 - \(C \): squared coefficient of variance = \(\sigma^2/m^2 \)
 - \(\mu \): service rate = \(\frac{1}{T_{ser}} \)
 - \(u \): server utilization (0 \(\leq u \leq 1 \)) \(u = \frac{\lambda}{\mu} = \lambda \times T_{ser} \)

- Parameters we wish to compute:
 - \(T_q \): Time spent in queue
 - \(L_q \): Length of queue = \(\lambda \times T_q \) (by Little’s law)

- Results (M: Poisson arrival process, 1 server):
 - Memoryless service time distribution (\(C = 1 \)): Called an M/M/1 queue
 \(T_q = T_{ser} \times \frac{u}{1 - u} \)
 - General service time distribution (no restrictions): Called an M/G/1 queue
 \(T_q = T_{ser} \times \frac{1}{2} (1+C) \times \frac{u}{1 - u} \)
A Little Queuing Theory: An Example (1/2)

• Example Usage Statistics:
 – User requests 10 x 8KB disk I/Os per second
 – Requests & service exponentially distributed (C=1.0)
 – Avg. service = 20 ms (From controller + seek + rotation + transfer)

• Questions:
 – How utilized is the disk (server utilization)? Ans: \(\mu = \lambda T_{\text{ser}} \)
 – What is the average time spent in the queue? Ans: \(T_q \)
 – What is the number of requests in the queue? Ans: \(L_q \)
 – What is the avg response time for disk request? Ans: \(T_{\text{sys}} = T_q + T_{\text{ser}} \)
A Little Queuing Theory: An Example (2/2)

• Questions:
 – How utilized is the disk (server utilization)? Ans: \(u = \lambda T_{\text{ser}} \)
 – What is the average time spent in the queue? Ans: \(T_q \)
 – What is the number of requests in the queue? Ans: \(L_q \)
 – What is the avg response time for disk request? Ans: \(T_{\text{sys}} = T_q + T_{\text{ser}} \)

• Computation:

\[
\begin{align*}
\lambda & \quad (\text{avg # arriving customers/s}) = 10/s \\
T_{\text{ser}} & \quad (\text{avg time to service customer}) = 20 \text{ ms (0.02s)} \\
u & \quad (\text{server utilization}) = \lambda \times T_{\text{ser}} = 10/s \times 0.02s = 0.2 \\
T_q & \quad (\text{avg time/customer in queue}) = T_{\text{ser}} \times u/(1 - u) \\
& \quad = 20 \times 0.2/(1-0.2) = 20 \times 0.25 = 5 \text{ ms (0.005s)} \\
L_q & \quad (\text{avg length of queue}) = \lambda \times T_q = 10/s \times 0.005s = 0.05s \\
T_{\text{sys}} & \quad (\text{avg time/customer in system}) = T_q + T_{\text{ser}} = 25 \text{ ms}
\end{align*}
\]
Queuing Theory Resources

• Resources page contains Queueing Theory Resources (under Readings):
 – Scanned pages from Patterson and Hennessy book that gives further discussion and simple proof for general equation: https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
 – A complete website full of resources: http://web2.uwindsor.ca/math/hlynka/qonline.html

• Some previous midterms with queueing theory questions

• Assume that Queueing Theory is fair game for Midterm III
Summary

• Disk Performance:
 – Queuing time + Controller + Seek + Rotational + Transfer
 – Rotational latency: on average $\frac{1}{2}$ rotation
 – Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
 – Response time (Latency) = Queue + Overhead + Transfer
 » Effective BW = BW * T/(S+T)
 – HDD: Queuing time + controller + seek + rotation + transfer
 – SDD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and reliability
 – Relative to performance characteristics of underlying device

• Bursts & High Utilization introduce queuing delays

• Queuing Latency:
 – M/M/1 and M/G/1 queues: simplest to analyze
 – As utilization approaches 100%, latency $\rightarrow \infty$
 \[T_q = T_{ser} \times \frac{1}{2} (1+C) \times \frac{u}{(1-u)} \]
Optimize I/O Performance

- How to improve performance?
 - Make everything faster 😊
 - More decoupled (Parallelism) systems
 - Do other useful work while waiting
 - Multiple independent buses or controllers
 - Optimize the bottleneck to increase service rate
 - Use the queue to optimize the service
- Queues absorb bursts and smooth the flow
- Add admission control (finite queues)
 - Limits delays, but may introduce unfairness and livelock

Response Time = Queue + I/O device service time
When is Disk Performance Highest?

• When there are big sequential reads, or
• When there is so much work to do that they can be piggy backed (reordering queues—one moment)

• OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>
 – Waste space for speed?

• Other techniques:
 – Reduce overhead through user level drivers
 – Reduce the impact of I/O delays by doing other useful work in the meantime