System Performance and Highly Concurrent Systems

Sam Kumar
CS 162: Operating Systems and System Programming
Lecture 14
https://inst.eecs.berkeley.edu/~cs162/su20

Read: A&D 7.5,
SEDA Section 2
Recall: Deadlock

• Starvation vs. Deadlock
 • Starvation: Thread indefinitely unable to make progress
 • Deadlock: Thread(s) unable to make progress due to circular wait

• Four conditions for deadlock:
 • Mutual exclusion
 • Hold and wait
 • No preemption
 • Circular Wait

• Three different approaches to address deadlock:
 1. **Deadlock avoidance**: dynamically delay resource requests so deadlock doesn’t happen
 2. **Deadlock prevention**: write your code in a way that it isn’t prone to deadlock
 3. **Deadlock recovery**: let deadlock happen, and then figure out how to recover from it
 4. Or **deadlock denial**: ignore the possibility of deadlock in applications
System Performance

• “Back of the Envelope” calculation and modeling
• Get the rough picture first... and don’t lose sight of it
Times (s) and Rates (op/s)

• **Latency** – time to complete a task
 • Measured in units of time (s, ms, us, …, hours, years)

• **Response Time** - time to initiate and operation and get its response
 • Able to issue one that *depends* on the result
 • Know that it is done (anti-dependence, resource usage)

• **Throughput** or **Bandwidth** – rate at which tasks are performed
 • Measured in units of things per unit time (ops/s, GLOP/s)

• **Performance??**
 • Operation time (4 mins to run a mile…)
 • Rate (mph, mpg, …)
Sequential Server Performance

• Single sequential “server” that can deliver a task in time L operates at rate $\leq \frac{1}{L}$ (on average, in steady state, ...)
 • $L = 10 \text{ ms} \rightarrow B = 100 \text{ op/s}$
 • $L = 2 \text{ yr} \rightarrow B = 0.5 \text{ op/yr}$

• Applies to a processor, a disk drive, a person, a TA, ...
Single Pipelined Server

- Single pipelined server of k stages for tasks of length L (i.e., time $\frac{L}{k}$ per stage) delivers at rate $\leq \frac{k}{L}$.
 - $L = 10$ ms, $k = 4 \rightarrow B = 400$ op/s
 - $L = 2$ yr, $k = 2 \rightarrow B = 1$ op/yr
Example Systems “Pipelines”

- Anything with queues between operational process behaves roughly “pipeline like”
- Important difference is that “initiations” are decoupled from processing
 - May have to queue up a burst of operations
 - Not synchronous and deterministic like in 61C
Multiple Servers

\(k \) servers handling tasks of length \(L \) delivers at rate \(\leq \frac{k}{L} \).

- \(L = 10 \text{ ms}, k = 4 \rightarrow B = 400 \text{ op/s} \)
- \(L = 2 \text{ yr}, k = 2 \rightarrow B = 1 \text{ op/yr} \)

- In 61C you saw multiple processors (cores)
 - Systems present lots of multiple parallel servers
 - Often with lots of queues
Example Systems “Parallelism”

I/O Processing

User Process → syscall → File System → Upper Driver

Communication

Parallel Computation, Databases, ...
A Simple Systems Performance Model

Latency (L): time per op
- How long does it take to flow through the system

“Service Time”

Bandwidth (B): Rate, Op/s
e.g., flow: gal per min

If $B = 2 \text{ gal/s}$ and $L = 3 \text{ s}$
How much water is “in the system?”
A Simple Systems Performance Model

Latency \((L)\): time per op
- How long does it take to flow through the system

“Service Time”

Bandwidth \((B)\): Rate, Op/s
- e.g., flow: gal per min

If \(B = 2 \frac{\text{op}}{\text{s}}\) and \(L = 3 \text{ s}\)
How many ops are “in the system?”
Little’s Law

• The number of “things” in a system is equal to the bandwidth times the latency (on average)

\[n = L B \]

• Applies to any stable system (arrival rate = departure rate)

• Can be applied to an entire system:
 • Including the queues, the processing stages, parallelism, whatever

• Or to just one processing stage:
 • i.e., disk I/O subsystem, queue leading into a CPU or I/O stage, ...
A Simple Systems Performance Model

\[\text{Request Rate: } \lambda \]

\[\text{Service Rate: } \mu \]

\[\text{Operation Time: } t \]

\[\text{Latency (} L \text{)} \]

\[\text{Queuing delay: } d \]

The maximum service rate \(\mu_{\text{max}} \) is a property of the system – the “bottleneck”

\[\text{Utilization: } \rho = \frac{\lambda}{\mu_{\text{max}}} \]

\[\text{Utilization: } \rho = \frac{\lambda}{\mu_{\text{max}}} \]
Ideal System Performance

- How does μ (service rate) vary with λ (request rate)?

![Graph showing the relationship between request rate (λ) and service rate (μ)]
Two Related Questions

What determines μ_{max}?

Service Rate: μ

Request Rate: λ

Latency (L)

Operation Time

Queuing delay: d

The maximum service rate μ_{max} is a property of the system – the “bottleneck”

Utilization: $\rho = \frac{\lambda}{\mu_{max}}$

What about “internal” queues?
Bottleneck Analysis

Overall System: Series of Stages

Request Rate: λ

Service Rate: μ

L L L L

L L L L

time
Bottleneck Analysis

- Each stage has its own queue and maximum service rate
- Suppose the green stage is the bottleneck

Overall System: Series of Stages
Bottleneck Analysis

• Each stage has its own queue and maximum service rate
• Suppose the green stage is the bottleneck
• The bottleneck stage dictates the maximum service rate μ_{max}

System Model: Bottleneck Stage

Request Rate: λ

Service Rate: μ

$\mu_{max} = \mu_{max,3}$
Example: Servicing a Highly Contended Lock

Time = \(p \cdot X \) sec
Rate = \(\frac{1}{X} \) ops/sec, regardless of \# cores

Queue of waiting threads

\(\mu_{max} = \frac{1}{X} \)

Critical section guarded by lock

\(X \) sec in critical section

All try to grab lock
Two Related Questions

- Latency (L)
- Operation Time
- Request Rate: λ
- Queuing delay: d
- Service Rate: μ
- μ_{max} is service rate of bottleneck stage
- Tank represents queue of bottleneck stage
 - Including queues of previous stages, in case of backpressure

The maximum service rate μ_{max} is a property of the system – the “bottleneck”

Utilization: $\rho = \frac{\lambda}{\mu_{max}}$
A Simple Systems Performance Model

Latency (L)

Operation Time

Service Rate: μ

Request Rate: λ

Queuing delay: d

The maximum service rate μ_{max} is a property of the system – the "bottleneck" Utilization: $\rho = \frac{\lambda}{\mu_{\text{max}}}$

Useful to apply this model to:

- Bottleneck stage
- Entire system up to and including bottleneck stage
- Entire system
Rest of Today’s Lecture

Using this system model, we will:

• Explore latency in more depth
• Discuss how to build systems that perform well under load
Announcements

• Homework 3 is due on Friday

• Change in policy: if you use a slip day on project, your final report deadline also gets pushed back a day
Rest of Today’s Lecture

Using this system model, we will:

• Explore latency in more depth
• Discuss how to build systems that perform well under load
Latency (Response Time)

- Total latency (response time): queuing time + service time
- Service time depends on the underlying operation
 - For CPU stage, how much computation
 - For I/O stage, characteristics of the hardware
- What about the queuing time?
A Simple Systems Performance Model

- Request Rate: λ
- Service Rate: μ
- Operation Time: t
- Queuing delay: d
- Latency (L)

The maximum service rate μ_{max} is a property of the system – the “bottleneck”

Utilization: $\rho = \frac{\lambda}{\mu_{max}}$
Queuing

- What happens when request rate (λ) exceeds max service rate (μ_{max})?
- Short bursts can be absorbed by the queue
 - If on average $\lambda < \mu$, it will drain eventually
- Prolonged $\lambda > \mu \rightarrow$ queue will grow without bound
A Simple, Deterministic World

- T_A: time between arrivals
 - $\lambda = \frac{1}{T_A}$
- T_S: service time
 - $\mu = \frac{k}{T_S}$
- T_Q: queuing time
 - $L = T_Q + T_S$

- Assume requests arrive at regular intervals, take a fixed time to process, with plenty of time between ...
A Simple, Deterministic World

Utilization \(\rho = \frac{\lambda}{\mu} = \frac{T_s}{T_A} \)

Delivered Throughput

Queue delay

time

Saturation

Empty Queue

Unbounded

Queue delay

time
A Bursty World

- T_A: time between arrivals
 - Now, a random variable
- T_S: service time
 - $\mu = \frac{k}{T_S}$
- T_Q: queuing time
 - $L = T_Q + T_S$

- Requests arrive in a burst, must queue up until served
- Same average arrival time, but almost all of the requests experience large queue delays (even though average utilization is low)
How to model burstiness of arrival?

• T_A, the time between arrivals, is now a random variable
 • Elegant mathematical framework if we model it as an exponential distribution
 • Probability distribution function of an exponential distribution with parameter λ is $f(x) = \lambda e^{-\lambda x}$

“Memoryless”: Likelihood of an event occurring is independent of how long we’ve been waiting

Lots of short arrival intervals (i.e., high instantaneous rate)

Few long gaps (i.e., low instantaneous rate)
A Simple Systems Performance Model

Request Rate: λ

Service Rate: μ

Operation Time: t

Queuing delay: d

Latency (L)

Utilization: $\rho = \frac{\lambda}{\mu_{\text{max}}}$

Queue grows at rate $\mu - \lambda$

After time t, it will have grown to length $t(\mu - \lambda)$
Background: Random Distributions

- Server spends variable time (T) with customers
 - Mean (Average): $m = \sum p(T) \cdot T$
 - Variance (stddev2): $\sigma^2 = \sum p(T) \cdot (T - m)^2 = \sum p(T) \cdot T^2 - m^2$
 - Squared coefficient of variance: $C = \sigma^2/m^2$

- Important values of C:
 - No variance or deterministic $\Rightarrow C = 0$
 - “Memoryless” or exponential $\Rightarrow C = 1$
 - Past tells nothing about future
 - Poisson process – *purely or completely* random process
 - Many complex systems (or aggregates) are well described as memoryless
Introduction to Queuing Theory

• Queuing Theory applies to long term, steady state behavior
 • Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution
Our Goals with Queuing Theory

• We wish to compute:
 • T_Q: Time spent in queue
 • L_Q: Length of the queue
Little’s Law Applied to a Queue

• Before, we had $n = LB$ (for a stable system):
 • B: bandwidth
 • L: latency
 • n: number of operations in the system

• When applied to a queue, we get:

\[L_Q = \lambda T_Q \]

Average length of the queue

Average Arrival Rate

Average time “waiting”
Our Goals with Queuing Theory

• We wish to compute:
 • L_Q: Length of the queue
 • T_Q: Time spent in queue
Some Results from Queuing Theory

• Assumptions: system in equilibrium, no limit to the queue, time between successive arrivals is random and memoryless

- λ: arrival rate
- T_S: mean time to service a customer
- C: squared coefficient of variance (σ^2/T_S^2)
- μ: service rate ($1/T_S$)
- ρ: utilization (λ/μ)
Some Results from Queuing Theory

• Memoryless service distribution ($C = 1$)—an “M/M/1 queue”:
 • $L_Q = \frac{\rho}{1-\rho}$

• General service distribution (no restrictions)—an “M/G/1 queue”:
 • $L_Q = \frac{1+C}{2} \cdot \frac{\rho}{1-\rho}$

• λ: arrival rate
• T_S: mean time to service a customer
• C: squared coefficient of variance (σ^2/T_S^2)
• μ: service rate ($1/T_S$)
• ρ: utilization (λ/μ)
Key Results with Queuing Theory

• \(L_Q = \frac{\rho}{1-\rho} \) (for memoryless service distribution)

• \(T_Q = \frac{1}{\lambda} L_Q \) (by Little’s Law)

The system is stable (\(\lambda = \mu \)), so:

• \(T_Q = \frac{1}{\mu} L_Q = T_S \cdot L_Q \) (for a single server)
Ideal System Performance

Request Rate (λ) - “offered load”

Service Rate (μ) - “delivered load”

Latency (λ)

Operation Time

Time

μ_{max}

μ_{max}

$T_Q \sim \frac{\rho}{1-\rho}$, $\rho = \frac{\lambda}{\mu_{max}}$

Why does latency blow up as we approach 100% utilization?
- Queue builds up on each burst
- But very rarely (or never) gets a chance to drain

“Half-Power Point” : load at which system delivers half of peak performance
- Design and provision systems to operate roughly in this regime
- Latency low and predictable, utilization good: ~50%
Break (If Time)
Rest of Today’s Lecture

Using this system model, we will:

• Explore latency in more depth

• Discuss how to build systems that perform well under load
A system that behaves this way is well-conditioned

- Delivered load increases with offered load until pipeline saturates
- As offered load increases further, throughput remains high

Request Rate (λ) - “offered load”

Service Rate (μ) - “delivered load”

μ_{max} asymptotic peak rate
Recall: Sockets with Protection and Concurrency

Client

Create Client Socket

Connect it to server (host:port)

Connection Socket

write request

read response

Close Client Socket

Server

Create Server Socket

Bind it to an Address (host:port)

Listen for Connection

Accept syscall()

Connection Socket

Child

Close Listen Socket

read request

write response

Close Connection Socket

Parent

Close Connection Socket

Close Server Socket
Recall: Server Protocol (v3)

// Socket setup code elided...
while (1) {
 // Accept a new client connection, obtaining a new socket
 int conn_socket = accept(server_socket, NULL, NULL);
 pid_t pid = fork();
 if (pid == 0) {
 close(server_socket);
 serve_client(conn_socket);
 close(conn_socket);
 exit(0);
 } else {
 close(conn_socket);
 //wait(NULL);
 }
}

close(server_socket);
Recall: Sockets with Concurrency, without Protection

Client
- Create Client Socket
- Connect it to server (host:port)
 - Connection Socket
 - write request
 - read response
 - Close Client Socket

Server
- Create Server Socket
- Bind it to an Address (host:port)
- Listen for Connection
- Accept syscall()
 - Spawned Thread
 - Connection Socket
 - read request
 - write response
- Close Connection Socket
- Close Server Socket
- pthread_create
- Main Thread
Non-Well-Conditioned Systems

• A server that spawns a new pthread per request is *not* well-conditioned!

• Figure from SEDA Section 2 reading (Welsh 2001)

Figure 2: Threaded server throughput degradation: This benchmark measures a simple threaded server which creates a single thread for each task in the
Building Well-Conditioned Systems

• Spawning a new thread or process for each request is not well-conditioned
• Too many threads is bad
 • Scheduling overhead becomes large
 • Context switch overhead becomes large
 • E.g., Poor cache performance
 • Synchronization overhead becomes large
 • E.g., Lock contention

• Was our original (v1) server well-conditioned?
 • The one that handles requests one at a time, with no concurrency?
Building Well-Conditioned Systems

1. Thread Pools
2. User-Mode Threads
3. Event-Driven Execution

We’ll discuss these next time...