Recall: Example of RR with Time Quantum = 20

- Example:

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>53</td>
</tr>
<tr>
<td>P_2</td>
<td>8</td>
</tr>
<tr>
<td>P_3</td>
<td>68</td>
</tr>
<tr>
<td>P_4</td>
<td>24</td>
</tr>
</tbody>
</table>

- The Gantt chart is:

```
0  20  48  68  88  108  125  145  153
P_1 P_2 P_3 P_4 P_1 P_3 P_3
```

- Waiting time for P_1: $(68-20)+(112-88)=72$
- P_2: $(20-0)=20$
- P_3: $(28-0)+(88-48)+(125-108)=85$
- P_4: $(48-0)+(108-68)=88$

- Average waiting time = $(72+20+85+88)/4=66$
- Average completion time = $(125+28+153+112)/4 = 104\frac{1}{2}$

• Thus, Round-Robin Pros and Cons:
 - Better for short jobs, Fair (+)
 - Context-switching time adds up for long jobs (-)

Round-Robin Discussion

- How do you choose time slice?
 - What if too big?
 » Response time suffers
 - What if infinite (∞)?
 » Get back FIFO
 - What if time slice too small?
 » Throughput suffers!
- Actual choices of timeslice:
 - Initially, UNIX timeslice one second:
 » Worked ok when UNIX was used by one or two people.
 » What if three compilations going on? 3 seconds to echo each keystroke!
 - Need to balance short-job performance and long-job throughput:
 » Typical time slice today is between 10ms – 100ms
 » Typical context-switching overhead is 0.1ms – 1ms
 » Roughly 1% overhead due to context-switching

Comparisons between FCFS and Round Robin

- Assuming zero-time context-switching, is RR always better than FCFS?
- Simple example:
 10 jobs, each take 100s of CPU time
 RR scheduler quantum of 1s
 All jobs start at the same time

<table>
<thead>
<tr>
<th>Job #</th>
<th>FIFO</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>991</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>992</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>900</td>
<td>999</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

- Both RR and FCFS finish at the same time
- Average response time is much worse under RR!
 » Bad when all jobs same length
- Also: Cache state must be shared between all jobs with RR but can be devoted to each job with FIFO
- Total time for RR longer even for zero-time switch!
Earlier Example with Different Time Quantum

<table>
<thead>
<tr>
<th>Completion Time</th>
<th>Quantum</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best FCFS</td>
<td>85</td>
<td>8</td>
<td>153</td>
<td>32</td>
<td>69½</td>
</tr>
<tr>
<td>Q = 1</td>
<td>137</td>
<td>30</td>
<td>153</td>
<td>81</td>
<td>100½</td>
</tr>
<tr>
<td>Q = 5</td>
<td>135</td>
<td>28</td>
<td>153</td>
<td>82</td>
<td>99½</td>
</tr>
<tr>
<td>Q = 8</td>
<td>133</td>
<td>16</td>
<td>153</td>
<td>80</td>
<td>95½</td>
</tr>
<tr>
<td>Q = 10</td>
<td>135</td>
<td>18</td>
<td>153</td>
<td>92</td>
<td>99½</td>
</tr>
<tr>
<td>Q = 20</td>
<td>125</td>
<td>28</td>
<td>153</td>
<td>112</td>
<td>104½</td>
</tr>
<tr>
<td>Worst FCFS</td>
<td>121</td>
<td>153</td>
<td>68</td>
<td>145</td>
<td>121½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wait Time</th>
<th>Quantum</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best FCFS</td>
<td>32</td>
<td>0</td>
<td>85</td>
<td>8</td>
<td>31½</td>
</tr>
<tr>
<td>Q = 1</td>
<td>84</td>
<td>22</td>
<td>85</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>Q = 5</td>
<td>82</td>
<td>20</td>
<td>85</td>
<td>58</td>
<td>61½</td>
</tr>
<tr>
<td>Q = 8</td>
<td>80</td>
<td>8</td>
<td>85</td>
<td>56</td>
<td>57½</td>
</tr>
<tr>
<td>Q = 10</td>
<td>82</td>
<td>10</td>
<td>85</td>
<td>68</td>
<td>61½</td>
</tr>
<tr>
<td>Q = 20</td>
<td>72</td>
<td>20</td>
<td>85</td>
<td>88</td>
<td>66½</td>
</tr>
<tr>
<td>Worst FCFS</td>
<td>68</td>
<td>145</td>
<td>0</td>
<td>121</td>
<td>83½</td>
</tr>
</tbody>
</table>

Handling Differences in Importance: Strict Priority Scheduling

- **Execution Plan**
 - Always execute highest-priority runnable jobs to completion
 - Each queue can be processed in RR with some time-quantum

- **Problems:**
 - **Starvation:** Lower priority jobs don’t get to run because higher priority jobs
 - **Deadlock: Priority Inversion**
 - Not strictly a problem with priority scheduling, but happens when low priority tasks has lock needed by high-priority task
 - Usually involves third, intermediate priority task that keeps running even though high-priority task should be running

How to fix problems?
Dynamic priorities – adjust base-level priority up or down based on heuristics about:
 - Locking (priority donation!)
 - Interactivity
 - Burst behavior
 - etc…

Scheduling Fairness

- **What about fairness?**
 - Strict fixed-priority scheduling between queues is unfair (run highest, then next, etc):
 - long running jobs may never get CPU
 - In Multics, shut down machine, found 10-year-old job
 - Must give long-running jobs a fraction of the CPU even when there are shorter jobs to run
 - **Tradeoff:** fairness gained by hurting avg response time!
Scheduling Fairness

• How to implement fairness?
 – Could give each queue some fraction of the CPU
 » What if one long-running job and 100 short-running ones?
 » Like express lanes in a supermarket—sometimes express lines get so long, get better service by going into one of the “slower” lines
 – Could increase priority of jobs that don’t get service
 » What is done in some variants of UNIX
 » This is ad hoc—what rate should you increase priorities?
 » And, as system gets overloaded, no job gets CPU time, so everyone increases in priority
 ⇒ Effectively no more priorities
 ⇒ Interactive jobs suffer

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
 – Give each job some number of lottery tickets
 – On each time slice, randomly pick a winning ticket
 – On average, CPU time is proportional to number of tickets given to each job
• How to assign tickets?
 – Higher priority jobs get more tickets
 – To approximate SRTF, short running jobs get more, long running jobs get fewer
 – To avoid starvation, every job gets at least one ticket (everyone makes progress)
• Advantage over strict priority scheduling: behaves gracefully as load changes
 – Adding or deleting a job affects all jobs proportionally, independent of how many tickets each job possesses

Lottery Scheduling Example

• Lottery Scheduling Example
 – Assume short jobs get 10 tickets, long jobs get 1 ticket

<table>
<thead>
<tr>
<th># short jobs/ # long jobs</th>
<th>% of CPU each short jobs gets</th>
<th>% of CPU each long jobs gets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>0/2</td>
<td>N/A</td>
<td>50%</td>
</tr>
<tr>
<td>2/0</td>
<td>50%</td>
<td>N/A</td>
</tr>
<tr>
<td>10/1</td>
<td>9.9%</td>
<td>0.99%</td>
</tr>
<tr>
<td>1/10</td>
<td>50%</td>
<td>5%</td>
</tr>
</tbody>
</table>

– What if too many short jobs to give reasonable response time?
 » If load average is 100, hard to make progress
 » One approach: log some user out

How to Evaluate a Scheduling algorithm?

• Deterministic modeling
 – takes a predetermined workload and compute the performance of each algorithm for that workload
• Queueing models
 – Mathematical approach for handling stochastic workloads
• Implementation/Simulation:
 – Build system which allows actual algorithms to be run against actual data – most flexible/general
How to Handle Simultaneous Mix of Diff Types of Apps?

- Can we use Burst Time (observed) to decide which application gets CPU time?
- Consider mix of interactive and high throughput apps:
 - How to best schedule them?
 - How to recognize one from the other?
 » Do you trust app to say that it is “interactive”?
 - Should you schedule the set of apps identically on servers, workstations, tablets, and cellphones?

How to Handle Simultaneous Mix of Diff Types of Apps?

- Assumptions encoded into many schedulers:
 - Apps that sleep a lot and have short bursts must be interactive apps — they should get high priority
 - Apps that compute a lot should get low(er?) priority, since they won’t notice intermittent bursts from interactive apps
- Hard to characterize apps:
 - What about apps that sleep for a long time, but then compute for a long time?
 - Or, what about apps that must run under all circumstances (say periodically)

What if we Knew the Future?

- Could we always mirror best FCFS?
- Shortest Job First (SJF):
 - Run whatever job has least amount of computation to do
 - Sometimes called “Shortest Time to Completion First” (STCF)
- Shortest Remaining Time First (SRTF):
 - Preemptive version of SJF: if job arrives and has a shorter time to completion than the remaining time on the current job, immediately preempt CPU
 - Sometimes called “Shortest Remaining Time to Completion First” (SRTCF)
- These can be applied to whole program or current CPU burst
 - Idea is to get short jobs out of the system
 - Big effect on short jobs, only small effect on long ones
 - Result is better average response time

Discussion

- SJF/SRTF are the best you can do at minimizing average response time
 - Provably optimal (SJF among non-preemptive, SRTF among preemptive)
 - Since SRTF is always at least as good as SJF, focus on SRTF
- Comparison of SRTF with FCFS and RR
 - What if all jobs the same length?
 » SRTF becomes the same as FCFS (FCFS is optimal if all jobs the same length)
 - What if jobs have varying length?
 » SRTF (and RR): short jobs not stuck behind long ones
Example to illustrate benefits of SRTF

- Three jobs:
 - A, B: both CPU bound, run for week
 - C: I/O bound, loop 1ms CPU, 9ms disk I/O
 - While C uses the disk, A or B could use 100% of the CPU
- With FIFO:
 - Once A or B get in, keep CPU for two weeks
- What about RR or SRTF?
 - Easier to see with a timeline

SRTF Example continued:

- Disk Utilization: 9/201 ~ 4.5%
- Disk Utilization: ~90% but lots of wakeups!
- RR 1ms time slice
- RR 100ms time slice

SRTF Challenges

- Starvation
 - SRTF can lead to starvation if many small jobs!
 - Large jobs never get to run
- Somehow need to predict future
 - How can we do this?
 - Some systems ask the user
 » When you submit a job, have to say how long it will take
 » To stop cheating, system kills job if takes too long
 - But: hard to predict job’s runtime even for non-malicious users

SRTF Discussion

- Bottom line, can’t really know how long job will take
 - However, can use SRTF as a yardstick for measuring other policies on a given trace
 - Optimal, so can’t do any better

- SRTF Pros & Cons
 - Optimal (average response time) (+)
 - Hard to predict future (-)
 - Unfair (-)
Administrivia

- **Midterm 1 Review session**: 3-6pm, Saturday, 2/24
 GPB 100 and/or Hearst Field Annex A1 (tentative)
- **Midterm 1**: 6:30-8:30pm, Wednesday, 2/28 (no class)
 - Li Ka Shing 245: IDs ending in 0,1,2,3
 - Hearst Field Annex A1: ...4,5,6
 - VLSB 2060: ...7,8
 - Barrows 20: ...9
 - CS 189: Wurster 102 (no electronics)
 - DSP: Soda 465 & 606
- **Project 1**: code due Friday, 3/2
 - Midterm includes project 1 material – everyone in group should understand all parts of the project!

SRTF Further discussion (Cont.)

- Bottom line, can’t really know how long job will take
 - However, can use SRTF as a yardstick for measuring other policies on a given trace
 - Optimal, so can’t do any better

- SRTF Pros & Cons
 - Optimal (average response time) (+)
 - Hard to predict future (-)
 - Unfair (-)

Predicting the Length of the Next CPU Burst

- **Adaptive**: Changing policy based on past behavior
 - CPU scheduling, in virtual memory, in file systems, in CPUs, etc.
 - Works because programs have predictable behavior
 » If program was I/O bound in past, likely in future
 » If computer behavior were random, wouldn’t help

- Example: SRTF with estimated burst length
 - Use an estimator function on previous bursts:
 Let \(t_{n-1}, t_{n-2}, t_{n-3}, \ldots \) be previous CPU burst lengths.
 Estimate next burst \(t_n = f(t_{n-1}, t_{n-2}, t_{n-3}, \ldots) \)
 - Function \(f \) could be one of many different time series estimation schemes (Kalman filters, etc)
 - For instance, exponential averaging
 \[
 \tau_n = \alpha t_{n-1} + (1-\alpha)\tau_{n-1}
 \] with \(0 < \alpha \leq 1 \)
Multi-Level Feedback Scheduling

Another method for exploiting past behavior (first use in CTSS)
- Multiple queues, each with different priority
 - Higher priority queues often considered “foreground” tasks
- Each queue has its own scheduling algorithm
 - e.g. foreground – RR, background – FCFS
 - Sometimes multiple RR priorities with quantum increasing exponentially (highest: 1ms, next: 2ms, next: 4ms, etc)
- Adjust each job’s priority as follows (details vary)
 - Job starts in highest priority queue
 - If timeout expires, drop one level
 - If timeout doesn’t expire, push up one level (or to top)

Scheduling Details

- Countermeasure: user action that can foil intent of OS designers
 - For multilevel feedback, put in a bunch of meaningless I/O to keep job’s priority high
 - Of course, if everyone did this, wouldn’t work!
- Example of Othello program:
 - Playing against competitor, so key was to do computing at higher priority the competitors.
 - Put in `printf`’s, ran much faster!

Real-Time Scheduling (RTS)

- Efficiency is important but predictability is essential:
 - We need to predict with confidence worst case response times for systems
 - In RTS, performance guarantees are:
 - Task- and/or class centric and often ensured a priori
 - In conventional systems, performance is:
 - System/throughput oriented with post-processing (… wait and see …)
 - Real-time is about enforcing predictability, and does not equal fast computing!!
- Hard Real-Time
 - Attempt to meet all deadlines
 - EDF (Earliest Deadline First), LLF (Least Laxity First), RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
- Soft Real-Time
 - Attempt to meet deadlines with high probability
 - Minimize miss ratio / maximize completion ratio (firm real-time)
 - Important for multimedia applications
 - CBS (Constant Bandwidth Server)
Example: Workload Characteristics

- Tasks are preemptable, independent with arbitrary arrival (=release) times
- Tasks have deadlines (D) and known computation times (C)
- Example Setup:

Example: Round-Robin Scheduling Doesn’t Work

Earliest Deadline First (EDF)

- Tasks periodic with period P and computation C in each period: (P, C)
- Preemptive priority-based dynamic scheduling
- Each task is assigned a (current) priority based on how close the absolute deadline is
- The scheduler always schedules the active task with the closest absolute deadline

A Final Word On Scheduling

- When do the details of the scheduling policy and fairness really matter?
 - When there aren’t enough resources to go around
- When should you simply buy a faster computer?
 - (Or network link, or expanded highway, or …)
 - One approach: Buy it when it will pay for itself in improved response time
 » Assuming you’re paying for worse response time in reduced productivity, customer angst, etc…
 » Might think that you should buy a faster X when X is utilized 100%, but usually, response time goes to infinity as utilization ≫ 100%
- An interesting implication of this curve:
 - Most scheduling algorithms work fine in the “linear” portion of the load curve, fail otherwise
 - Argues for buying a faster X when hit “knee” of curve
Summary (1 of 2)

• Round-Robin Scheduling:
 – Give each thread a small amount of CPU time when it executes; cycle between all ready threads
 – Pros: Better for short jobs

• Shortest Job First (SJF) / Shortest Remaining Time First (SRTF):
 – Run whatever job has the least amount of computation to do/least remaining amount of computation to do
 – Pros: Optimal (average response time)
 – Cons: Hard to predict future, Unfair

Summary (2 of 2)

• Lottery Scheduling:
 – Give each thread a priority-dependent number of tokens (short tasks ⇒ more tokens)

• Multi-Level Feedback Scheduling:
 – Multiple queues of different priorities and scheduling algorithms
 – Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

• Real-time scheduling
 – Need to meet a deadline, predictability essential
 – Earliest Deadline First (EDF) and Rate Monotonic (RM) scheduling