
Computer Science 162
Sam Kumar

University of California, Berkeley
Quiz 1

July 6, 2020

Name

Student ID

This is an open-book exam. You may access existing materials, including online materials (such
as the course website). During the quiz, you may not communicate with other people regarding
the quiz questions or answers in any capacity. For example, posting to a forum asking for help
is prohibited, as is sharing your exam questions or answers with other people (or soliciting this
information from them).

You have 80 minutes to complete it. If there is something in a question that you believe is
open to interpretation, please make a private post on Piazza asking for clarification. If you run into
technical issues during the quiz, join our open Zoom call and we will try to help you out. The final
page is for reference.

We will overlook minor syntax errors in grading coding questions. You do not have to add the
necessary #include statements at the top.

Grade Table (for instructor use only)

Question: 1 2 3 4 5 6 7 Total

Points: 1 15 10 10 18 26 0 80

Score:

1. (1 point) Please check the boxes next to the following statements after you have read through
and agreed with them.

√
I will complete this quiz with integrity, doing the work entirely on my own.

√
I will NOT attempt to obtain answers or partial answers from any other people.

√
I will NOT post questions about this quiz on online platforms such as StackOverflow.

√
I will NOT discuss any information about this quiz until 24 hours after it is over.

√
I understand the consequences of violating UC Berkeley’s Code of Student Conduct.

Quiz 1 - Page 2 of 17 Student ID:

2. (15 points) Operating System Concepts

Choose either True or False for the questions below. You do not need to provide justifications.
Each student received 15 questions, chosen randomly from the ones below.

(a) (1 point) The processor can be switched to kernel mode during execution of a user process,
if the user process issues a system call.√

True
© False

(b) (1 point) The processor can be switched to kernel mode during execution of a user process,
without the user process issuing a system call.√

True
© False

(c) (1 point) The number of threads in the system may exceed the number of CPU cores.√
True

© False
(d) (1 point) To safely process system calls, the kernel must maintain a separate stack in the

kernel for each thread in each user process.
© True√

False
(e) (1 point) When a process issues a system call in Pintos, the kernel must change the active

page table (i.e., update the page table base register) so that the system call handler can
access kernel memory.

© True√
False

(f) (1 point) Different threads within the same process share the same stack.
© True√

False
(g) (1 point) A thread can overwrite the stack of another thread in the same process.√

True
© False

(h) (1 point) Different threads within the same process share the same heap.√
True

© False
(i) (1 point) On a multi-core system, different threads within the same process may simulta-

neously run on different cores.√
True

© False
(j) (1 point) The execve system call creates a new process.

© True√
False

(k) (1 point) A successful call to fork is guaranteed to return different values in the parent
and child processes.

Quiz 1 - Page 3 of 17 Student ID:

√
True

© False

(l) (1 point) A child process can call wait to wait for its parent to exit.
© True
√

False

(m) (1 point) The execve system call closes any open file descriptors in the calling process
before executing the new program.

© True
√

False

(n) (1 point) When a process issues a system call, the processor uses the type of the system
call (e.g., open vs. read vs. write) to determine which element of the interrupt vector
table to dispatch to.

© True
√

False

(o) (1 point) Every successful call to fread necessarily results in a read system call.
© True
√

False

(p) (1 point) Every successful call to fclose necessarily results in a close system call.
√

True
© False

(q) (1 point) If a process allocates memory with malloc but exits without freeing it, then
the allocated memory remains unavailable to other processes until the system is rebooted.

© True
√

False

(r) (1 point) On a successful call to open, the returned file descriptor number is guaranteed
to be unique across all active file descriptors in all threads/processes in the system.

© True
√

False

(s) (1 point) On a successful call to fork, the returned child PID is guaranteed to be unique
across all PIDs of running processes in the system.

√
True

© False

(t) (1 point) When a process reads a file using a FILE*, the file data is buffered twice, once
by the kernel and again in the process address space.

√
True

© False

(u) (1 point) In a Unix-like operating system, a process can use the same two system calls,
read and write, for interacting with files, pipes, and sockets.

√
True

© False

Quiz 1 - Page 4 of 17 Student ID:

(v) (1 point) Processes on different systems may communicate over the network using sockets.
√

True
© False

(w) (1 point) Processes on the same system may communicate using sockets.
√

True
© False

(x) (1 point) An RPC client can communicate with a server by calling read and write on the
socket returned by the socket system call.

√
True

© False

(y) (1 point) An RPC server can communicate with a client by calling read and write on the
socket returned by the socket system call.

© True
√

False

Quiz 1 - Page 5 of 17 Student ID:

3. (10 points) Operating System Abstractions

For each question below, select all of the choices that apply. You should assume:

• Calls to open, fopen, fork, pthread_create, malloc, and realloc always succeed.
• Calls to read, write, dup, and dup2 succeed if a valid file descriptor is provided.
• The necessary header files from the C standard library are #included.
• Before each program is run, file.txt is an empty file.
• All threads eventually make progress. Make no other assumptions about the scheduler.

(a) (2 points) Which of the following could be the contents of file.txt after all processes of
the program below terminate?
int main(int argc, char** argv) {

if (fork() == 0) {
int fd1 = open("file.txt", O_WRONLY);
write(fd1, "a", 1);

} else {
int fd2 = open("file.txt", O_WRONLY);
write(fd2, "b", 1);

}
}
� (empty)

√
a
√

b � aa � ab � ba � bb

(b) (2 points) Which of the following could be the contents of file.txt after all processes of
the program below terminate?
char buffer;
int main(int argc, char** argv) {

int fd = open("file.txt", O_WRONLY);
if (fork() == 0) {

buffer = ’a’;
} else {

buffer = ’b’;
}
write(fd, &buffer, 1);

}
� (empty) � a � b � aa

√
ab

√
ba � bb

(c) (2 points) Which of the following could be the contents of file.txt after the program
below terminates?
int fd;
void* helper(void* arg) {

write(fd, "a", 1);
}
int main(int argc, char** argv) {

fd = open("file.txt", O_WRONLY);
pthread_t thread;
pthread_create(&thread, NULL, helper, NULL);
write(fd, "b", 1);

}

Quiz 1 - Page 6 of 17 Student ID:

� (empty) � a
√

b � aa
√

ab
√

ba � bb

(d) (2 points) Which of the following could be the contents of file.txt after the program
below terminates?
int fd;
void* helper(void* arg) {

write(fd, "a", 1);
pthread_exit(NULL);

}
int main(int argc, char** argv) {

fd = open("file.txt", O_WRONLY);
pthread_t thread;
pthread_create(&thread, NULL, helper, NULL);
write(fd, "b", 1);
pthread_exit(NULL);

}
� (empty) � a � b � aa

√
ab

√
ba � bb

(e) (2 points) Which of the following could be the contents of file.txt after the program
below terminates?
int fd;
char buffer;
void* helper(void* arg) {

buffer = ’a’;
write(fd, &buffer, 1);
pthread_exit(NULL);

}
int main(int argc, char** argv) {

fd = open("file.txt", O_WRONLY);
pthread_t thread;
pthread_create(&thread, NULL, helper, NULL);
buffer = ’b’;
write(fd, &buffer, 1);
pthread_exit(NULL);

}
� (empty) � a � b

√
aa

√
ab

√
ba

√
bb

Quiz 1 - Page 7 of 17 Student ID:

4. (10 points) Short Answer

Answer the following questions. Each student received 5 questions, taken from the ones
below.

(a) (2 points) List a disadvantage of the POSIX File I/O abstraction on a single-node system
(i.e., non-distributed system).

Solution: Its interface requires data to be copied from the kernel into the process’
address space. We discussed this in class in the context of “kernel buffering.” For high-
performance applications, (e.g., reading data over the network at high speed), this copy
can become a bottleneck. Instead, zero-copy solutions, which typically use a different
interface, are necessary to take full advantage of the hardware’s performance.

(b) (2 points) When might it be appropriate to use FILE* instead of file descriptors?

Solution: If the application reads a few bytes at a time, then using FILE* would be
more appropriate. Using file descriptors directly could lead to significant overhead from
system calls. Using FILE*, data is copied in large chunks into a buffer in the process’
address space, meaning that system calls are issued more rarely. For each read, the
application merely makes a function call to copy bytes out of the buffer in the process’
address space, which is significantly cheaper than issuing a system call.

(c) (2 points) Suppose you are writing an OS for a processor that supports paged address
translation but not dual-mode operation. Is it possible to protect processes from each
other and the kernel from buggy/malicious processes? Explain.

Solution: No. Because there is no dual mode operation, a buggy/malicious process
could reconfigure the hardware’s address translation to give itself access to other pro-
cess’ or the OS’ memory, making protection impossible.

(d) (2 points) In Project 0, you saw that when a user program in Pintos is started, it begins
executing in _start, which calls main. What problems might occur if we just started the
user process at the beginning of main, without using _start?

Solution: If the user process were started directly at the beginning of main, then the
program would not cleanly exit when main returns. It would return into the dummy
return address provided by the OS, likely resulting in a segmentation fault, instead of
issuing an exit system call. In contrast, _start calls main, and if main returns, it
issues an exit system call.

(e) (2 points) What is the role of DNS in RPC?

Quiz 1 - Page 8 of 17 Student ID:

Solution: There are two possible answers here. One is that DNS is used as the binding
step in RPC, allowing the client to resolve the server’s hostname to an IP address. The
other acceptable answer is that DNS can be understood as using RPCs—the DNS
resolver makes RPC calls to each name server.

(f) (2 points) Does it ever make sense to make an RPC to a local process on the same machine,
as opposed to a remote process on a different machine? Explain.

Solution: Yes. It allows one process (the client) to ask another process on the same
system to perform a service for it. As discussed in class, this potentially allows services
traditionally provided by the kernel to instead be provided by other processes, providing
greater modularity.

(g) (2 points) Suppose that a process has multiple connections open to the same server, ob-
tained by making multiple calls to connect. When the OS receives data (e.g., a packet)
from the server, how does it know which connection it belongs to?

Solution: A connection is determined by five variables: client address, client port,
server address, server port, and protocol. Although the client address and server ad-
dress are the same, the OS can use one of the three other variables to determine which
connection each packet belongs to. For example, even if both connections are TCP con-
nections to the same server-side port, the OS will use the client port to disambiguate
the connections.

(h) (2 points) Explain why calling fork in a program that uses FILE*might lead to unexpected
results. What operation can we call on each FILE* to prevent this from occurring?

Solution: The underlying open file description will be aliased between the two pro-
cesses, but the buffer will be copied. This could potentially cause the contents of the
buffer at the time of the fork to be written twice, once by each process. We can call
fflush to discard the buffer’s contents before calling fork to avoid these problems.

Quiz 1 - Page 9 of 17 Student ID:

5. (18 points) System Programming

(a) (2 points) In the 32-bit x86 assembly below, the function foo intends to make the function
call bar(1, 2, 3). Fill in one of the lines below with a single assembly instruction, so
that the function call to bar is made with a properly aligned stack. Leave the other
lines blank. You may assume that the stack was properly aligned when calling foo.
foo:

pushl %ebp

movl %esp, %ebp

subl $12, %esp
pushl $3
pushl $2
pushl $1

call bar
leave
ret

Commentary:
Some students were given variants of this question where a different number of argu-
ments were used when calling bar. If four arguments were used, then the instruction
should be subl $8, %esp, and if one argument was used, then the instruction should
be subl $4, %esp.

(b) (10 points) Write the function void run(void) that invokes the program /bin/foo and
the program /bin/bar as follows:

• foo should read its standard input from the file input.txt.
• bar should write its standard output to the file output.txt.
• foo’s standard output should be redirected into the standard input of bar.

For this problem, you may assume that all system calls succeed when provided
with valid arguments; for simplicity, you need not check return values to handle
error cases. You do not have to add the necessary #include statements at the
top. Where possible, you should make sure to close all file descriptors that you create
once they are no longer necessary. run should return after spawning the two processes,
without waiting for them to complete.

Quiz 1 - Page 10 of 17 Student ID:

Solution:
void run(void) {

int ifd = open("input.txt", O_RDONLY);
int ofd = open("output.txt", O_WRONLY);
int pfds[2];
pipe(pfds);
if (fork() == 0) {

dup2(ifd, STDIN_FILENO);
dup2(pfds[1], STDOUT_FILENO);
close(ifd);
close(ofd);
close(pfds[0]);
close(pfds[1]);
execl("/bin/foo", "/bin/foo");

}
if (fork() == 0) {

dup2(ofd, STDOUT_FILENO);
dup2(pfds[0], STDIN_FILENO);
close(ifd);
close(ofd);
close(pfds[0]);
close(pfds[1]);
execl("/bin/bar", "/bin/bar");

}
close(ifd);
close(ofd);
close(pfds[0]);
close(pfds[1]);

}

Commentary:
The trickiest part of this solution is remembering to close all opened file descriptors
before the exec calls in each child process. This is especially important for the pipe
system calls, so that EOF is propagated as expected if the first process closes its stdout
or the second process closes its stdin. It was possible to receive 9 out of 10 points for
this question even if no file descriptors are closed.

(c) (6 points) Implement write_all, a function that writes the contents of buffer to the file
descriptor fd. It should write all len bytes, unless an error occurs. It should return -1
if there was an error, or otherwise the number of bytes written (which should be len).
Where possible, you must avoid making a separate system call for each byte of the buffer.
Remember that write may return short, so use a loop as appropriate. You do
not have to add the necessary #include statements at the top.

Quiz 1 - Page 11 of 17 Student ID:

Solution:
ssize_t write_all(int fd, char* buffer, size_t len) {

ssize_t total_written = 0;
ssize_t rv;
while ((rv = write(fd, &buffer[total_written],

len - total_written)) > 0) {
total_written += rv;

}

if (rv == -1) {
return -1;

}

return total_written;
}

Quiz 1 - Page 12 of 17 Student ID:

6. (26 points) Remote Procedure Calls

An RPC server’s main function is as follows:

int main(int argc, char **argv) {
struct addrinfo *server = setup_address(argv[1]);
if (server == NULL) {

return 1;
}
int server_socket = socket(server->ai_family, server->ai_socktype,

server->ai_protocol);
if (server_socket == -1) {

return 1;
}
if (bind(server_socket, server->ai_addr, server->ai_addrlen) == -1) {

return 1;
}
if (listen(server_socket, 50) == -1) {

return 1;
}
run_service(server_socket);
return 0;

}

The run_service function is intended to receive and process client requests in a loop. Currently,
the run_service function creates a new process to serve each client, as follows:

void run_service(int server_socket) {
for (;;) {

int client_socket = accept(server_socket, NULL, NULL);
if (client_socket == -1) {

return;
}
if (fork() == 0) {

close(server_socket);
serve_client(client_socket);
exit(0);

} else {
close(client_socket);

}
}

}

(a) (3 points) Suppose that the server has handled n RPCs from clients. How many times
has the server called socket, bind, listen, connect, and accept? (List a count for each
one.)

Quiz 1 - Page 13 of 17 Student ID:

Solution:
socket: 1
bind: 1
listen: 1
connect: 0
accept: n

(b) (1 point) Would deleting the line close(server_socket); result in a resource leak? Ex-
plain.

Solution: No, it would not result in a resource leak. When each child exits, the OS
will close all open file descriptors in the child process, including this. It is acceptable
to rely on this to close the file descriptor because the child process is short-lived; it
exits when the connection is closed.

(c) (1 point) Would deleting the line close(client_socket); result in a resource leak? Ex-
plain.

Solution: Yes, it would result in a resource leak. Each time a connection is handled,
a new file descriptor is opened by the call to accept, and these open file descriptors
accumulate in the server process. It is not acceptable to rely on the parent process to
exit to close these file descriptors because the parent process is long-lived.

(d) (2 points) Suppose that, instead of handling each RPC call in a separate process, we
handle each RPC call in a separate thread, within the same process.
i. (1 point) Should the child thread execute close(server_socket)? Explain.

Solution: No, because doing so would also close the socket in the parent thread.
Threads within the same process share the same table of open file descriptors in
the kernel.

ii. (1 point) Should the parent thread execute close(client_socket)? Explain.

Solution: No, because doing so would also close the socket in the child thread.
Threads within the same process share the same table of open file descriptors in
the kernel.

(e) (3 points) What might be a reason to create a thread, rather than a process, for each RPC
call?

Quiz 1 - Page 14 of 17 Student ID:

Solution: Threads would be more performant (less overhead to switch threads than
to switch processes).

(f) (3 points) Is there any benefit to using a process for each RPC call, rather than a thread?
Explain.

Solution: Processes isolate the individual RPC calls.

(g) (6 points) Implement a new version of run_service such that a new process is still created
to serve each client, but the maximum number of clients being served at a time is at most
10. You do not have to add the necessary #include statements at the top.

Solution:
void run_service(int server_socket) {

int num_children = 0;
for (;;) {

int client_socket = accept(server_socket, NULL, NULL);
if (client_socket == -1) {

return;
}
if (num_children == 10) {

wait(NULL);
} else {

num_children++;
}
pid_t child = fork();
if (child == 0) {

close(server_socket);
serve_client(client_socket);
return 0;

} else if (child > 0) {
close(client_socket);

} else {
return;

}
}

}

(h) (6 points) We would like to extend this RPC server by adding support for a new operation,
char* get_student_info(uint32_t);. This function takes in one argument, the Student

Quiz 1 - Page 15 of 17 Student ID:

ID (represented as a uint32_t). Its return value is the student’s email address as a string.
i. (3 points) Write the function

void marshal_student_info(char* email_addr, int sock_fd);
which marshals the student’s email address and writes it to the connection socket.
You may assume that email_addr is provided to marshal_student_info as a null-
terminated string, and you may use your write_all implementation from earlier in
the exam if it is useful. Assume that no error will occur when writing to the socket (i.e.,
you may omit error handling for simplicity). You do not have to add the necessary
#include statements at the top.

Solution:
void marshal_student_info(const char* email_addr, int sock_fd) {

uint32_t len = strlen(email_addr);
len = htonl(len);
write_all(sock_fd, &len, sizeof(len));
write_all(sock_fd, email_addr, strlen(email_addr));

}

ii. (2 points) Should marshal_student_info be called by the server stub or client stub?
Explain.

Solution: It should be called by server stub, because it is marshalling the return
value of the RPC call, which is destined for the client.

iii. (2 points) After the connection is set up, is there any other data that the client should
send to the server other than the Student ID? Explain.

Solution: Yes. The client should send an identifier for the get_student_info
function to indicate to the server that that is the function that the client intends
to call.

Quiz 1 - Page 16 of 17 Student ID:

7. (0 points) Optional Questions

(a) (0 points) Having finished the exam, how do you feel about it? Check all that apply:

� � � � � � � �

� � � Other (please draw):

(b) (0 points) If there’s anything you’d like to tell the course staff (e.g., feedback about the
class or exam, suspicious activity during the exam, new logo suggestions, etc.) you can
write it on this page.

/******************************* Threads *******************************/
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);
int pthread_join(pthread_t thread, void **retval);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);
/****************************** Processes *******************************/
pid_t fork(void); pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);
int execv(const char *path, char *const argv[]);
void exit(int status);
/*************************** High-Level I/O *****************************/
FILE *fopen(const char *path, const char *mode);
FILE *fdopen(int fd, const char *mode);
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);
int fclose(FILE *stream);
/**************************** Low-Level I/O *****************************/
int open(const char *pathname, int flags); (O_APPEND|O_CREAT|O_TMPFILE|O_TRUNC)
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
int dup(int oldfd);
int dup2(int oldfd, int newfd);
int pipe(int pipefd[2]);
int close(int fd);
/**************************** Pintos Lists ******************************/
void list_init(struct list *list);
struct list_elem *list_begin(struct list *list);
struct list_elem *list_next(struct list_elem *elem);
struct list_elem *list_end(struct list *list);
void list_insert(struct list_elem *before, struct list_elem *elem);
void list_push_front(struct list *list, struct list_elem *elem);
void list_push_back(struct list *list, struct list_elem *elem);
struct list_elem *list_remove(struct list_elem *elem);
struct list_elem *list_pop_front(struct list *list);
struct list_elem *list_pop_back(struct list *list);
bool list_empty(struct list *list);
#define list_entry(LIST_ELEM, STRUCT, MEMBER) ...

