
CS162
Operating Systems and
Systems Programming

Lecture 24

Distributed 1: Reliability, Transactions,
Distributed Decision Making, 2PC

April 18th, 2023
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 24.24/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Review: Important “ilities”
• Availability: the probability that the system can accept and process requests

– Measured in “nines” of probability: e.g. 99.9% probability is “3-nines of availability”
– Key idea here is independence of failures

• Durability: the ability of a system to recover data despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on pyramids was very durable,

but could not be accessed until discovery of Rosetta Stone

• Reliability: the ability of a system or component to perform its required
functions under stated conditions for a specified period of time (IEEE
definition)

– Usually stronger than simply availability: means that the system is not only “up”,
but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk crashes, other problems

Lec 24.34/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Review: How to Make File Systems more Durable?
• Disk blocks contain Reed-Solomon error correcting codes (ECC) to deal with

small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– Use special, battery-backed RAM (called non-volatile RAM or NVRAM) for dirty blocks

in buffer cache

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is struck by lightning….
» Could put copies on servers in different continents…

Lec 24.44/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Review: RAID 6 and other Erasure Codes
• In general: RAIDX is an “erasure code”

– Must have ability to know which disks are bad
– Treat missing disk as an “Erasure”

• Today, disks so big that: RAID 5 not sufficient!
– Time to repair disk sooooo long, another disk might fail in process!
– “RAID 6” – allow 2 disks in replication stripe to fail
– Requires more complex erasure code, such as EVENODD code (see readings)

• More general option for general erasure code: Reed-Solomon codes
– Based on polynomials in GF(2k) (I.e. k-bit symbols)
– 𝑚 data points define a degree 𝑚 polynomial; encoding is 𝑛 points on the polynomial
– Any 𝑚 points can be used to recover the polynomial; 𝑛 𝑚 failures tolerated

• Erasure codes not just for disk arrays. For example, geographic replication
– E.g., split data into 𝑚 4 chunks, generate 𝑛 16 fragments and distribute across

the Internet
– Any 4 fragments can be used to recover the original data --- very durable!

Lec 24.54/18/2024 Kubiatowicz CS162 © UCB Spring 2024

File System Reliability:
(Difference from Block-level reliability)

• What can happen if disk loses power or software crashes?
– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all such failures
– No protection against writing bad state
– What if one disk of RAID group not written?

• File system needs durability (as a minimum!)
– Data previously stored can be retrieved (maybe after some recovery step),

regardless of failure

• But durability is not quite enough…!

Lec 24.64/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Storage Reliability Problem
• Single logical file operation can involve updates to multiple physical disk blocks

– inode, indirect block, data block, bitmap, …
– With sector remapping, single update to physical disk block can require multiple

(even lower level) updates to sectors

• At a physical level, operations complete one at a time
– Want concurrent operations for performance

• How do we guarantee consistency regardless of when crash occurs?

Lec 24.74/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Threats to Reliability
• Interrupted Operation

– Crash or power failure in the middle of a series of related updates may leave stored
data in an inconsistent state

– Example: transfer funds from one bank account to another
– What if transfer is interrupted after withdrawal and before deposit?

• Loss of stored data
– Failure of non-volatile storage media may cause previously stored data to

disappear or be corrupted

Lec 24.84/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Reliability Approach #1: Careful Ordering
• Sequence operations in a specific order

– Careful design to allow sequence to be interrupted safely
– Data block inode free directory

• Post-crash recovery
– Read data structures to see if there were any operations in progress
– Clean up/finish as needed

• Approach taken by
– FAT and FFS (fsck) to protect filesystem structure/metadata
– Many app-level recovery schemes (e.g., Word, emacs autosaves)

Lec 24.94/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Berkeley FFS: Create a File

Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of free blocks

and inodes
• Update directory with file name
 inode number

• Update modify time for directory

Recovery:
• Scan inode table
• If any unlinked files (not in any

directory), delete or put in lost &
found dir

• Compare free block bitmap
against inode trees

• Scan directories for missing
update/access times

Time proportional to disk size

Lec 24.104/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Reliability Approach #2: Copy on Write File Layout

• Recall: multi-level index structure lets us find the data blocks of a file
• Instead of over-writing existing data blocks and updating the index structure:

– Create a new version of the file with the updated data
– Reuse blocks that don’t change much of what is already in place
– This is called: Copy On Write (COW)

• Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances
– NetApp’s Write Anywhere File Layout (WAFL)
– ZFS (Sun/Oracle) and OpenZFS

Lec 24.114/18/2024 Kubiatowicz CS162 © UCB Spring 2024

COW with Smaller-Radix Blocks

• If file represented as a tree of blocks, just need
to update the leading fringe

Write

old version new version

Lec 24.124/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Example: ZFS and OpenZFS
• Variable sized blocks: 512 B – 128 KB
• Symmetric tree

– Know if it is large or small when we make the copy
• Store version number with pointers

– Can create new version by adding blocks and new pointers
• Buffers a collection of writes before creating a new version with them
• Free space represented as tree of extents in each block group

– Delay updates to freespace (in log) and do them all when block group is activated

Lec 24.134/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Administrivia
• Midterm 3: Next Thursday!

– No class on day of midterm
– Three double-sided pages of notes
– Watch for Ed post about where you should go: we

have multiple exam rooms
– Confict request form due Thursday!

• All material up to next Tuesday’s lecture is fair game
• Final deadlines during RRR week:

– Yes, there will be some office hours – watch for
specifics

• Extra “fun” lecture on Tuesday of RRR week!
https://tinyurl.com/mby6f47t

Lec 24.144/18/2024 Kubiatowicz CS162 © UCB Spring 2024

More General Reliability Solutions
• Use Transactions for atomic updates

– Ensure that multiple related updates are performed atomically
– i.e., if a crash occurs in the middle, the state of the systems reflects either all or

none of the updates
– Most modern file systems use transactions internally to update filesystem

structures and metadata
– Many applications implement their own transactions

• Provide Redundancy for media failures
– Redundant representation on media (Error Correcting Codes)
– Replication across media (e.g., RAID disk array)

Lec 24.154/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Transactions
• Closely related to critical sections for manipulating shared data structures

• They extend concept of atomic update from memory to stable storage
– Atomically update multiple persistent data structures

• Many ad-hoc approaches
– FFS carefully ordered the sequence of updates so that if a crash occurred

while manipulating directory or inodes the disk scan on reboot would detect
and recover the error (fsck)

– Applications use temporary files and rename

Lec 24.164/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Key Concept: Transaction
• A transaction is an atomic sequence of reads and writes that takes the

system from consistent state to another.

• Recall: Code in a critical section appears atomic to other threads
• Transactions extend the concept of atomic updates from memory to

persistent storage

consistent state 1 consistent state 2
transaction

Lec 24.174/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Typical Structure
• Begin a transaction – get transaction id

• Do a bunch of updates
– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

Lec 24.184/18/2024 Kubiatowicz CS162 © UCB Spring 2024

“Classic” Example: Transaction

UPDATE accounts SET balance = balance ‐ 100.00 WHERE
name = 'Alice';

UPDATE branches SET balance = balance ‐ 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob';

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

BEGIN; ‐‐BEGIN TRANSACTION

COMMIT; ‐‐COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

Lec 24.194/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Concept of a log
• One simple action is atomic – write/append a basic item
• Use that to seal the commitment to a whole series of actions

G
et

 1
0$

 fr
om

 a
cc

ou
nt

 A

G
et

 7
$

fr
om

 a
cc

ou
nt

 B

G
et

 1
3$

 fr
om

 a
cc

ou
nt

 C

Pu
t 1

5$
 in

to
 a

cc
ou

nt
 X

Pu
t 1

5$
 in

to
 a

cc
ou

nt
 Y

St
ar

t T
ra

n
N

C
om

m
it

Tr
an

 N

Lec 24.204/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Transactional File Systems
• Better reliability through use of log

– Changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

Lec 24.214/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Journaling File Systems
• Don’t modify data structures on disk directly
• Write each update as transaction recorded in a log

– Commonly called a journal or intention list
– Also maintained on disk (allocate blocks for it when formatting)

• Once changes are in the log, they can be safely applied to file system
– e.g. modify inode pointers and directory mapping

• Garbage collection: once a change is applied, remove its entry from the log

• Linux took original FFS-like file system (ext2) and added a journal to get ext3!
– Some options: whether or not to write all data to journal or just metadata

• Other examples: NTFS, Apple HFS+/apfs, Linux XFS, JFS, ext4

Lec 24.224/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Creating a File (No Journaling Yet)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• Write map (i.e., mark used)
• Write inode entry to point to block(s)
• Write dirent to point to inode

Data blocks

Free
space
map…

Inode table

Directory
entries

Lec 24.234/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Creating a File (With Journaling)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• [log] Write map (i.e., mark used)
• [log] Write inode entry to point to block(s)
• [log] Write dirent to point to inode

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Lec 24.244/18/2024 Kubiatowicz CS162 © UCB Spring 2024

After Commit, Eventually Replay Transaction

• All accesses to the file system first looks in
the log

– Actual on-disk data structure might be stale

• Eventually, copy changes to disk and
discard transaction from the log

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

head

pendingdone

st
ar

t

co
m

m
it

tail tail tail tail tail

Lec 24.254/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Crash Recovery: Discard Partial Transactions

• Upon recovery, scan the log

• Detect transaction start with no commit

• Discard log entries

• Disk remains unchanged

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

Lec 24.264/18/2024 Kubiatowicz CS162 © UCB Spring 2024

• Scan log, find start

• Find matching commit

• Redo it as usual
– Or just let it happen later

Data blocks

Free
space
map…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

Crash Recovery: Keep Complete Transactions

Lec 24.274/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Journaling Summary
Why go through all this trouble?
• Updates atomic, even if we crash:

– Update either gets fully applied or discarded
– All physical operations treated as a logical unit

Isn’t this expensive?
• Yes! We're now writing all data twice (once to log, once to actual data

blocks in target file)
• Modern filesystems journal metadata updates only

– Record modifications to file system data structures
– But apply updates to a file’s contents directly

Lec 24.284/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large distributed system
– Microprocessors in everything
– Vast infrastructure behind them Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

Recall: Societal Scale Information Systems

Lec 24.294/18/2024 Kubiatowicz CS162 © UCB Spring 2024

• Centralized System: major functions performed by a single physical computer
– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers working together on task
– Early model: multiple servers working together

» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Centralized vs Distributed Systems

Lec 24.304/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Distributed Systems: Motivation/Issues/Promise

• Why do we want distributed systems?
– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: much easier for users to collaborate through network

resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

Lec 24.314/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Distributed Systems: Reality
• Reality has been disappointing

– Worse availability: depend on every machine being up
» Lamport: “A distributed system is one in which the failure of a computer

you didn’t even know existed can render your own computer unusable.”
– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information
– What would be easy in a centralized system becomes a lot more difficult

• Trust/Security/Privacy/Denial of Service
– Many new variants of problems arise as a result of distribution
– Can you trust the other members of a distributed application enough to even

perform a protocol correctly?
– Corollary of Lamport’s quote: “A distributed system is one where you can’t do work

because some computer you didn’t even know existed is successfully coordinating
an attack on my system!”

Leslie Lamport

Lec 24.324/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its complexity behind a

simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by splitting them into smaller

pieces
– Fault Tolerance: System may hide various things that go wrong

• Transparency and collaboration require some way for different processors to
communicate with one another

Lec 24.334/18/2024 Kubiatowicz CS162 © UCB Spring 2024

How do entities communicate? A Protocol!

• A protocol is an agreement on how to communicate, including:
– Syntax: how a communication is specified & structured

» Format, order messages are sent and received
– Semantics: what a communication means

» Actions taken when transmitting, receiving, or when a timer expires
• Described formally by a state machine

– Often represented as a message transaction diagram
– Can be a partitioned state machine: two parties synchronizing duplicate sub-state

machines between them
– Stability in the face of failures!

Protocol ExchangeB
A

DC
E

B
A

DC
E

Stable
Storage

Stable
Storage

Lec 24.344/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Examples of Protocols in Human Interactions

• Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”
6. Caller: “Hi, it’s Anthony….”

Or: “Hi, it’s me” (what’s that about?)
7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up

Lec 24.354/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot get same

message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue
» Over Internet, destination specified by IP address and Port (Recall Web server example!)

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

R
eceive

Lec 24.364/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually received the message?
– When can sender reuse the memory containing message?

• Mailbox provides 1-way communication from T1T2
– T1bufferT2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 24.374/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];
while(1) {

prepare message;
send(msg1,mbox);

}
Consumer:

int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}
• No need for producer/consumer to keep track of space in mailbox: handled by

send/receive
– This is one of the roles of the window in TCP: window is size of buffer on far end
– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 24.384/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client requester, Server responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];

send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Server: (responding with the file)
char command[1000], answer[1000];

receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response

Lec 24.394/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Distributed Consensus Making
• Consensus problem

– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value from set of proposed

values
• Distributed Decision Making

– Choose between “true” and “false”
– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!
– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database
– In a global-scale system?

» What about erasure coding or massive replication?
» Like BlockChain applications!

Lec 24.404/18/2024 Kubiatowicz CS162 © UCB Spring 2024

General’s Paradox
• General’s paradox:

– Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because he arrived a
couple of days too early

Lec 24.414/18/2024 Kubiatowicz CS162 © UCB Spring 2024

General’s Paradox (con’t)
• Can messages over an unreliable network be used to guarantee two

entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!
– In real life, use radio for simultaneous (out of band) communication

• So, clearly, we need something other than simultaneity!

Lec 24.424/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Two-Phase Commit
• Since we can’t solve the General’s Paradox

(i.e. simultaneous action), let’s solve a related problem

• Distributed transaction: Two or more machines agree to do
something, or not do it, atomically

– No constraints on time, just that it will eventually happen!

• Two-Phase Commit protocol: Developed by Turing award
winner Jim Gray

– (first Berkeley CS PhD, 1969)
– Many important DataBase breakthroughs also from Jim Gray

Jim Gray

Lec 24.434/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Two-Phase Commit Protocol
• Persistent stable log on each machine: keep track of whether commit has

happened
– If a machine crashes, when it wakes up it first checks its log to recover state of

world at time of crash
• Prepare Phase:

– The global coordinator requests that all participants will promise to commit or
rollback the transaction

– Participants record promise in log, then acknowledge
– If anyone votes to abort, coordinator writes "Abort" in its log and tells everyone

to abort; each records "Abort" in log
• Commit Phase:

– After all participants respond that they are prepared, then the coordinator writes
"Commit" to its log

– Then asks all nodes to commit; they respond with ACK
– After receive ACKs, coordinator writes "Got Commit" to log

• Log used to guarantee that all machines either commit or don’t

Lec 24.444/18/2024 Kubiatowicz CS162 © UCB Spring 2024

2PC Algorithm
• One coordinator
• N workers (replicas)
• High level algorithm description:

– Coordinator asks all workers if they can commit
– If all workers reply “VOTE‐COMMIT”, then coordinator broadcasts “GLOBAL‐COMMIT”

Otherwise coordinator broadcasts “GLOBAL‐ABORT”
– Workers obey the GLOBAL messages

• Use a persistent, stable log on each machine to keep track of what you are
doing

– If a machine crashes, when it wakes up it first checks its log to recover state of
world at time of crash

Lec 24.454/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Two-Phase Commit: Setup
• One machine (coordinator) initiates the protocol
• It asks every machine to vote on transaction

• Two possible votes:
– Commit
– Abort

• Commit transaction only if unanimous approval

Lec 24.464/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Two-Phase Commit: Preparing
Worker Agrees to Commit
• Machine has guaranteed that it will accept transaction
• Must be recorded in log so machine will remember this decision if it fails

and restarts
Worker Agrees to Abort
• Machine has guaranteed that it will never accept this transaction
• Must be recorded in log so machine will remember this decision if it fails

and restarts

Lec 24.474/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Two-Phase Commit: Finishing
Commit Transaction
• Coordinator learns all machines have agreed to commit
• Record decision to commit in local log
• Apply transaction, inform voters
Abort Transaction
• Coordinator learns at least one machine has voted to abort
• Record decision to abort in local log
• Do not apply transaction, inform voters

Lec 24.484/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Two-Phase Commit: Finishing
Commit Transaction
• Coordinator learns all machines have agreed to commit
• Record decision to commit in local log
• Apply transaction, inform voters
Abort Transaction
• Coordinator learns at least one machine has voted to abort
• Record decision to abort in local log
• Do not apply transaction, inform voters

Lec 24.494/18/2024 Kubiatowicz CS162 © UCB Spring 2024

State Machine Description of 2PC

• Two Phase Commit (2PC) can be described with interacting state machines
• Coordinator only waits for votes in “WAIT” state

– In WAIT, if doesn’t receive N votes, it times out and sends GLOBAL-ABORT
• Worker waits for VOTE-REQ in INIT

– Worker can time out and abort (coordinator handles it)
• Worker waits for GLOBAL-* message in READY

– Coordinator fails workers BLOCK waiting for coordinator to recover and send GLOBAL_*
message

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: all VOTE‐COMMIT
Send: GLOBAL‐COMMIT

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv:
GLOBAL‐ABORT

Recv:
GLOBAL‐COMMIT

Coordinator Worker

Lec 24.504/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Detailed Algorithm

Coordinator sends VOTE‐REQ to all
workers

– Wait for VOTE‐REQ from coordinator
– If ready, send VOTE‐COMMIT to

coordinator
– If not ready, send VOTE‐ABORT to

coordinator
– And immediately abort

– If receive VOTE‐COMMIT from all
N workers, send GLOBAL‐COMMIT
to all workers

– If don’t receive VOTE‐COMMIT
from all N workers, send GLOBAL‐
ABORT to all workers

– If receive GLOBAL‐COMMIT then
commit

– If receive GLOBAL‐ABORT then abort

Coordinator Algorithm Worker Algorithm

Lec 24.514/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Failure Free Example Execution

coordinator

worker 1

time

VOTE‐
REQ

VOTE‐
COMMIT

GLOBAL‐
COMMIT

worker 2

worker 3

Lec 24.524/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Example of Worker Failure

coordinator

worker 1

time

VOTE‐REQ

VOTE‐
COMMIT

GLOBAL‐
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3

Lec 24.534/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Example of Coordinator Failure #1

coordinator

worker 1

VOTE‐
REQ

VOTE‐
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3

Lec 24.544/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Example of Coordinator Failure #2

VOTE‐REQ

VOTE‐
COMMIT

INIT

READY

ABORT COMM

block waiting for
coordinator

restarted

GLOBAL‐
ABORT

coordinator

worker 1

worker 2

worker 3

Lec 24.554/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Durability

• All nodes use stable storage to store current state
– stable storage is non-volatile storage (e.g. backed by disk) that

guarantees atomic writes.
– E.g.: SSD, NVRAM

• Upon recovery, nodes can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker “asks” Coordinator in READY

Lec 24.564/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Alternatives to 2PC
• Three-Phase Commit: One more phase, allows nodes to fail or block and still

make progress.
• PAXOS: An alternative used by Google and others that does not have 2PC

blocking problem
– Develop by Leslie Lamport (Turing Award Winner)
– No fixed leader, can choose new leader on fly, deal with failure
– Some think this is extremely complex!

• RAFT: PAXOS alternative from John Osterhout (Stanford)
– Simpler to describe complete protocol

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making
– Use a more hardened decision making process:

Byzantine Agreement and Block Chains

Lec 24.574/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General and n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 lieutenants such that the
following Integrity Constraints apply:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal lieutenants obey the order he

sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

Lieutenant
Malicious!

Lec 24.584/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 because one malicious player can
mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision even if some subset of them
(< n/3) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant

Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 24.594/18/2024 Kubiatowicz CS162 © UCB Spring 2024

• BlockChain: a chain of blocks connected by hashes to root block
– The Hash Pointers are unforgeable (assumption)
– The Chain has no branches except perhaps for heads
– Blocks are considered “authentic” part of chain when they have authenticity info in them

• How is the head chosen?
– Some consensus algorithm
– In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is chosen by solving

hard problem
» This is the job of “miners” who try to find “nonce” info that makes hash over block have

specified number of zero bits in it
» The result is a “Proof of Work” (POW)
» Selected blocks above (green) have POW in them and can be included in chains

– Longest chain wins

Hash Ptr
Root
Block

The “Block Chain”

Tentative Head #2

Tentative Head #1

Is a BlockChain a Distributed Decision Making Algorithm?

Lec 24.604/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Is a Blockchain a Distributed Decision
Making Algorithm? (Con’t)

• Decision means: Proposal is locked into BlockChain
– Could be Commit/Abort decision
– Could be Choice of Value, State Transition, ….

• NAK: Didn’t make it into the block chain (must retry!)
• Anyone in world can verify the result of decision making!

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Proposal

Proposal

Epidemic
Replication

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Lec 24.614/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Summary (1/3)
• Copy-on-write provides richer function (versions) with much simpler recovery

– Little performance impact since sequential write to storage device is nearly free
• Transactions over a log provide a general solution

– Journaled file systems such as ext3, NTFS
– Commit sequence to durable log, then update the disk
– Log takes precedence over disk
– Replay committed transactions, discard partials

Lec 24.624/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Summary (2/3)
• A protocol is an agreement on how to communicate, including:

– Syntax: how a communication is specified & structured
» Format, order messages are sent and received

– Semantics: what a communication means
» Actions taken when transmitting, receiving, or when a timer expires

• Consensus problem
– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value from set of proposed

values
• Two-phase commit: a form of distributed decision making

– First, make sure everyone guarantees they will commit if asked (prepare)
– Next, ask everyone to commit

Lec 24.634/18/2024 Kubiatowicz CS162 © UCB Spring 2024

Summary (3/3)
• Byzantine General’s Problem: distributed decision making with malicious

failures
– One general, n-1 lieutenants: some number of them may be malicious (often “f”

of them)
– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n 3f+1

• BlockChain protocols:
– Cryptographically-driven ordering protocol
– Could be used for distributed decision making

