C3S162
Operating Systems and
Systems Programming

Lecture 12

Scheduling 2:
Classic Policies (Con’t), Case Studies,
Realtime, Starvation

February 27, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu



Recall: SRTF Example contipued-

Disk Utilization:
(|3 A B 9/201 ~ 4.5%
I

CS RR 100ms time slice [ Disk Utilization:
/0 ~90% but lots
T of wakeups!
IIIIII II

i II . .

> RR 1ms time slice

Cs C’s

oo Disk Utilization:
C A A A 90%
=i

> > SRTF
Cs C’s
/O 1/O

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.2



SRTF Further discussion

Starvation
— SRTF can lead to starvation if many small jobs!
— Large jobs never get to run

Somehow need to predict future
— How can we do this?

— Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system Kills job if takes too long

— But: hard to predict job’s runtime even for non-malicious users
Bottom line, can’t really know how long job will take

— However, can use SRTF as a yardstick for measuring other policies

— Optimal, so can’t do any better
SRTF Pros & Cons

— Optimal (average response time) (+)

— Hard to predict future (-)

— Unfair (-)
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Predicting the Length of the Next CPU Burst

« Adaptive: Changing policy based on past behavior
— CPU scheduling, in virtual memory, in file systems, etc
— Works because programs have predictable behavior
» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help
« Example: SRTF with estimated burst length

— Use an estimator function on previous bursts: Lett, 4, t ,, t, 5, etc. be previous
CPU burst lengths. Estimate next burst t, = f(t,_4, t., t.3, ?

— Function f could be one of many different time series estimation schemes
(Kalman filters, etc)

— For instance: exponential averaging | =
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How to Handle Simultaneous Mix of Diff Types of Apps?

Consider mix of interactive and high throughput apps:
— How to best schedule them?
— How to recognize one from the other?

» Do you trust app to say that it is “interactive™? ol
— Should you schedule the set of apps identically on | .|

Weighted toward small bursts

servers, workstations, pads, and cellphones? 0|

 For instance, is Burst Time (observed) useful to |2

decide which application gets CPU time? g @

— Short Bursts = Interactivity = High Priority? |

« Assumptions encoded into many schedulers:
— Apps that sleep a lot and have short bursts must 0 :

| | |
16 24 32
burst duration (milliseconds)

!
40

be interactive apps — they should get high priority

— Apps that compute a lot should get low(er?) priority, since they won’t notice

intermittent bursts from interactive apps
Hard to characterize apps:

— What about apps that sleep for a long time, but then compute for a long time?
— Or, what about apps that must run under all circumstances (say periodically)
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Multi-Level Feedback Scheduling

Tasks Demoted to
~ Low Priority

quantum = 16

—’f quantum = 8 \% .
Long-Running Compute
N 4?/

—P‘é FCFS

« Another method for exploiting past behavior (first use in CTSS)
— Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
— Each queue has its own scheduling algorithm

» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially
(highest:1ms, next: 2ms, next: 4ms, etc)

« Adjust each job’s priority as follows (details vary)
— Job starts in highest priority queue
— If timeout expires, drop one level

— If timeout doesn’t expire, push up one level (or to top)
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Scheduling Details

quantum = 8

Long-Running Compute
Tasks Demoted to
~ Low Priority

Wil

quantum = 16

il

FCFS

» Result approximates SRTF:
— CPU bound jobs drop like a rock
— Short-running I/0O bound jobs stay near top

» Scheduling must be done between the queues
— Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
— Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest
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2/27/2024

Scheduling Details
—

Long-Running Compute
Tasks Demoted to
~ Low Priority

quantum = 16

Wil

—P‘é FCFS

« Countermeasure: user action that can foil intent of the OS designers

— For multilevel feedback, put in a bunch of meaningless I/O to keep job’s
priority high

— Of course, if everyone did this, wouldn’t work!
« Example of Othello program:

— Playing against competitor, so key was to do computing at higher priority the
competitors.

» Put in printf's, ran much faster!
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Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0] 100 139
 Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower priority value = higher priority (for realtime values)

— Highest priority value = Lower priority (for nice values)

— All algorithms O(1)
» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

« Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired
queue, after which queues swapped

« Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority
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Linux O(1) Scheduler

CPU-X Expired CPU-X Active
runqueue rungueue
= - W * Lots of ad-hoc heuristics
o, B, oriority 2 —Try to boost priority of
a P > Real-time task priorities I/O_bound tasks
L i P J —Try to boost priority of
> —r— > ——
§ 5 = starved tasks
; =1 Priority 101 %‘ =t Priority 101 '
) . ) - > User task prorities

=t Prionty 140 =+—> Priority 140 [
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O(1) Scheduler Continued

* Heuristics
— User-task priority adjusted +5 based on heuristics
» p->sleep _avg = sleep _time — run_time
» Higher sleep_avg = more I/O bound the task, more reward (and vice versa)
— Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time

» IC is used to provide hysteresis to avoid changing interactivity for temporary changes in
behavior

— However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long...
* Real-Time Tasks
— Always preempt non-RT tasks
— No dynamic adjustment of priorities
— Scheduling schemes:
» SCHED_FIFO: preempts other tasks, no timeslice limit

» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority
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So, Does the OS Schedule Processes or Threads?

Many textbooks use the “old model™—one thread per process
Usually it's really: threads (e.g., in Linux) but can be task groups (also Linux)

Note: switching threads vs. switching processes incurs different costs:
— Switch threads: Save/restore registers

— Switch processes: Change active address space too!
» Expensive
» Disrupts caching

Recall, However: Simultaneous Multithreading (or “Hyperthreading”)

— Different threads interleaved on a cycle-by-cycle basis and can be in different
processes (have different address spaces)
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Administrivia
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Midterm 1 results: Mean: 52.4, StdDev: 15.0, Min: 9.6, Max: 93.2!

Project 1 due tomorrow (Wednesday, 2/28)
— Code and final report

Also due Tomorrow: Peer evaluations
— These are a required mechanism for evaluating group dynamics
— Project scores are a zero-sum game

» In the normal/best case, all partners get the same grade

» In groups with issues, we may take points from non-participating group members and give
them to participating group members!

Homework 3:

— Due Tuesday 3/5

— Can be done in Rust (if you want!)
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Multi-Core Scheduling

 Algorithmically, not a huge difference from single-core scheduling

» Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

« Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

— Cache reuse, branch prediction
— Example for O(1) scheduler: 1 set of queues/core with background rebalancing
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Recall: Spinlocks for multiprocessing

Spinlock implementation:

int value = @; // Free
Acquire() {
while (test&set(&value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

Spinlock doesn’t put the calling thread to sleep—it just busy waits
— When might this be preferable?
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

Every test&set () is a write, which makes value ping-pong around between core-local caches
(using lots of memory!)

— So —really want to use test&test&set() !

As we discussed in Lecture 8, the extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {
do {
while(value); // wait until might be free
} while (test&set(&value)); // exit if acquire lock
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Gang Scheduling and Parallel Applications

* When multiple threads work together on a multi-core '\/\/\’
system, try to schedule them together :’ ‘\

— Makes spin-waiting more efficient (inefficient to spin-wait

for a thread that’s suspended) CAASS

— Multiple phases of parallel and serial execution \‘

- Additionally: OS informs a parallel program how many _\/\/» |
processors its threads are scheduled on (Scheduler |
Activations)

— Application adapts to number of cores that it has scheduled

— “Space sharing” with other parallel programs can be more
efficient, because parallel speedup is often sublinear with the
number of cores

\ i
' i
' i
| 1
! i
\W
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Real-Time Scheduling

» Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!

— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)
— Real-time is about enforcing predictability, and does not equal fast computing!!!
» Hard real-time: for time-critical safety-oriented systems
— Meet all deadlines (if at all possible)
— Ideally: determine in advance if this is possible

— Earliest Deadline First (EDF), Least Laxity First (LLF),
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

« Soft real-time: for multimedia

— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)
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« Tasks are preemptable, independent with arbitrary arrival (=release) times
« Tasks have deadlines (D) and known computation times (C)

Example: Workload Characteristics

« Example Setup:

2/27/2024
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Example: Round-Robin Scheduling Doesn’t Work

T4 I | ] " l

w

'

L

Time
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Earliest Deadline First (EDF)

« Tasks periodic with period P and computation C in each period: (P;, C;) for
each task i

* Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute
deadline is (i.e. D!** = D} + P;for each task!)

— The scheduler always schedules the active task with the closest absolute deadline

=D . — 1 = . — 1 = 1 =
I,=0(2) T—- | 1 . 1 -—o—-—»
=021 — 1 . . e

0 5
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EDF Feasibility Testing

« Even EDF won’t work if you have too many tasks
* For n tasks with computation time C and deadline D, a feasible schedule

exists if:
n
C;
> () =1
.\ D;
1=1
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Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation # Deadlock because starvation could resolve under right
circumstances

— Deadlocks are unresolvable, cyclic requests for resources

Causes of starvation:
— Scheduling policy never runs a particular thread on the CPU
— Threads wait for each other or are spinning in a way that will never be resolved

Let’s explore what sorts of problems we might encounter and how to avoid
them...
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Strawman: Non-Work-Conserving Scheduler

» A work-conserving scheduler is one that does not leave the CPU idle when
there is work to do

* A non-work-conserving scheduler could trivially lead to starvation

* In this class, we’ll assume that the scheduler is work-conserving (unless
stated otherwise)
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Strawman: Last-Come, First-Served (LCFS)

« Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
« When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)
— Queue builds up faster than it drains

* Queue can build in FIFO too, but “serviced in the order received”...
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Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

g N ] ! ! 1 1 |

m >
g .
@] %T BN I S S s e B . time
o)) I I EE e 7 7 1 [ |

= ] B I BN B e e

= arrivals I O N o

- 1 I N [

© [

O

=

T}

()

« |f a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run

* Problem with all non-preemptive schedulers...
— And early personal OSes such as original MacOS, Windows 3.1, etc
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Is Round Robin (RR) Prone to Starvation?

« Each of N processes gets ~1/N of CPU (in window)
— With quantum length Q ms, process waits at most (N-7)*Q ms to run again
— So a process can'’t be kept waiting indefinitely

« So RRis fair in terms of waiting time

— Not necessarily in terms of throughput... (if you give up your time slot early,
you don’t get the time back!)
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Is Priority Scheduling Prone to Starvation?

* Recall: Priority Scheduler always runs the | Priority 3 F={Job 1 |=»{Job2 }={Job 3
thread with highest priority Priority 2 = Job 4
— Low priority thread might never run! Priority 1
— Starvation... Priority 0 [==»|Job5 t=»{Job 6 = Job 7

» But there are more serious problems as well...
— Priority inversion: even high priority threads might become starved
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Priority Inversion

Priority 3

Priority 2

Priority 1

« At this point, which job does the scheduler choose?
« Job 3 (Highest priority)
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Priority Inversion

Priority 3 -._ Acquire()

Priority 2

™
“
=~

Priority 1

« Job 3 attempts to acquire lock held by Job 1
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Priority Inversion

Priority 3

Priority 2

Priority 1

« At this point, which job does the scheduler choose?
« Job 2 (Medium Periority)
* Priority Inversion
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Priority Inversion

Where high priority task is blocked waiting on low priority task
Low priority one must run for high priority to make progress
Medium priority task can starve a high priority one

When else might priority lead to starvation or “live lock™?

High Priority Low Priority

c while (try_lock) { lock.acquire(..) |

} lock.release(..)
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One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority 1

« Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation/Inheritance

Priority 3 - Release()

Priority 2 \‘\\
Priority 1 e

« Job 3 temporarily grants Job 1 its “high priority” to run on its behalf
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One Solution: Priority Donation/Inheritance

Priority 3 k. Acquire()

-—y
o

Priority 2 Job2 | U
Priority 1 Job 1

« Job 1 completes critical section and releases lock
« Job 3 acquires lock, runs again Project 2:
« How does the scheduler know? Scheduling
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Case Study: Martian Pathflnder Rover

July 4, 1997 — Pathfinder lands on Mars
— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

« Problem? Periority Inversion! Priority 2 =/ Data Distribution Task: needs lock |
— Low priority task grabs mutex trying to Priority 1_[={ Lots of random medium stuff
communicate with high priority task: Priority O [==p{ ASUMET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

Solution: Turn priority donation back on and upload fixes!

Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
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Are SRTF and MLFQ Prone to Starvation?

—
quantum = 8 -
—L\Long-Running Compute
Tasks Demoted to

_»r _?/ Low Priority
quantum = 16 —
—Vr FCFS

* In SRTF, long jobs are starved in favor of short ones
— Same fundamental problem as priority scheduling
 MLFQ is an approximation of SRTF, so it suffers from the same problem
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Cause for Starvation: Priorities?

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

» But priorities were a means, not an end

« Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive
jobs effectively on common hardware

— Give the 1/0O bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

— Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

— Let the CPU bound ones grind away without too much disturbance

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.37



Recall: Changing Landscape...

Computers
1 crunching,
1:106 Data Storage,
Massive Inet
Services,
Bell’s Law: New ML, ...
computer class 1:103
Productivity,

every 10 years

 Interactive

1:1
Streaming
from/to the
103:1 physical
world
years Mote
! The Internet
of Things!
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Changing Landscape of Scheduling

 Priority-based scheduling rooted in “time-sharing”
— Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs |/0O bound

« 80’s brought about personal computers, workstations, and servers on
networks

— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)

« 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

— Server consolidation, massive clustered services, huge flashcrowds
— It's about predictability, 95t percentile performance guarantees
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Key Idea: Proportional-Share Scheduling

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

 Instead, we can share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)
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Lottery Scheduling

« Simple Idea:
— Give each job some number of lottery tickets
— On each time slice, randomly pick a winning ticket

—On average, CPU time is proportional to number of tickets
given to each job

« How to assign tickets?
— To approximate SRTF, short running jobs get more, long running jobs get fewer

—To avoid starvation, every job gets at least one ticket (everyone makes
progress)

« Advantage over strict priority scheduling: behaves gracefully as load changes

— Adding or deleting a job affects all jobs proportionally, independent of how
many tickets each job possesses
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Lottery Scheduling Example (Cont.)

* Lottery Scheduling Example
— Assume short jobs get 10 tickets, long jobs get 1 ticket

# short jobs/ | % of CPU each | % of CPU each
# long jobs short jobs gets | long jobs gets
1/1 91% 9%
0/2 N/A 50%
2/0 950% N/A
10/1 9.9% 0.99%
1/10 950% 5%

— What if too many short jobs to give reasonable response time?

» If load average is 100, hard to make progress
» One approach: log some user out
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Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

 Pickanumberdinl1 .. N,,, asthe
random “dart”

 Jobs record their N, of allocated tickets
* Order them by N,

Select the first j such that )}, N. up to j
exceeds d.
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Unfairness

L « E.g., Given two jobs A and B of same run time

s (# Qs) that are each supposed to receive 50%,
2 e U = finish time of first / finish time of last
%j » As a function of run time
5 04

0.2 -

0.0 T T 1

1 10 100 1000

Job Length
Figure 9.2: Lottery Fairness Study
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Stride Scheduling

« Achieve proportional share scheduling without resorting to randomness,
and overcome the “law of small numbers” problem.

. “Stride” of each job is 2V

l

— The larger your share of tickets, the smaller your stride
— Ex: W =10,000, A=100 tickets, B=50, C=250
— A stride: 100, B: 200, C: 40
« Each job has a “pass” counter
« Scheduler: pick job with lowest pass, runs it, add its stride to its pass
« Low-stride jobs (lots of tickets) run more often
— Job with twice the tickets gets to run twice as often
« Some messiness of counter wrap-around, new jobs, ...
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Conclusion

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of processes?
Priority Inversion

— A higher-priority task is prevented from running by a lower-priority task

— Often caused by locks and through the intervention of a middle-priority task

Proportional Share Scheduling
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)
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