C3S162
Operating Systems and
Systems Programming

Lecture 12

Scheduling 2:
Classic Policies (Con’t), Case Studies,
Realtime, Starvation

February 27, 2024
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: SRTF Example contipued-

Disk Utilization:
(|3 A B 9/201 ~ 4.5%
I

CS RR 100ms time slice [Disk Utilization:
/0 ~90% but lots
T of wakeups!
IIIIII II

i II . .

> RR 1ms time slice

Cs C’s

oo Disk Utilization:
C A A A 90%
=i

> > SRTF
Cs C’s
/O 1/O

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.2

SRTF Further discussion

Starvation
— SRTF can lead to starvation if many small jobs!
— Large jobs never get to run

Somehow need to predict future
— How can we do this?

— Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system Kills job if takes too long

— But: hard to predict job’s runtime even for non-malicious users
Bottom line, can’t really know how long job will take

— However, can use SRTF as a yardstick for measuring other policies

— Optimal, so can’t do any better
SRTF Pros & Cons

— Optimal (average response time) (+)

— Hard to predict future (-)

— Unfair (-)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.3

Predicting the Length of the Next CPU Burst

« Adaptive: Changing policy based on past behavior
— CPU scheduling, in virtual memory, in file systems, etc
— Works because programs have predictable behavior
» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help
« Example: SRTF with estimated burst length

— Use an estimator function on previous bursts: Lett, 4, t ,, t, 5, etc. be previous
CPU burst lengths. Estimate next burst t, = f(t,_4, t., t.3, ?

— Function f could be one of many different time series estimation schemes
(Kalman filters, etc)

— For instance: exponential averaging | =
Th = Od:n—’I-I-(‘I'OL)'[:n-1 o
with (0<oa<1) | t

HCPU st {f) B i E 4 13

sss' (T 10 = 153 & =l o 11

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.4

How to Handle Simultaneous Mix of Diff Types of Apps?

Consider mix of interactive and high throughput apps:
— How to best schedule them?
— How to recognize one from the other?

» Do you trust app to say that it is “interactive™? ol
— Should you schedule the set of apps identically on | .|

Weighted toward small bursts

servers, workstations, pads, and cellphones? 0|

 For instance, is Burst Time (observed) useful to |2

decide which application gets CPU time? g @

— Short Bursts = Interactivity = High Priority? |

« Assumptions encoded into many schedulers:
— Apps that sleep a lot and have short bursts must 0 :

| | |
16 24 32
burst duration (milliseconds)

!
40

be interactive apps — they should get high priority

— Apps that compute a lot should get low(er?) priority, since they won’t notice

intermittent bursts from interactive apps
Hard to characterize apps:

— What about apps that sleep for a long time, but then compute for a long time?
— Or, what about apps that must run under all circumstances (say periodically)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 12.5

Multi-Level Feedback Scheduling

Tasks Demoted to
~ Low Priority

quantum = 16

—’f quantum = 8 \% .
Long-Running Compute
N 4?/

—P‘é FCFS

« Another method for exploiting past behavior (first use in CTSS)
— Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
— Each queue has its own scheduling algorithm

» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially
(highest:1ms, next: 2ms, next: 4ms, etc)

« Adjust each job’s priority as follows (details vary)
— Job starts in highest priority queue
— If timeout expires, drop one level

— If timeout doesn’t expire, push up one level (or to top)
2/27/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 12.6

Scheduling Details

quantum = 8

Long-Running Compute
Tasks Demoted to
~ Low Priority

Wil

quantum = 16

il

FCFS

» Result approximates SRTF:
— CPU bound jobs drop like a rock
— Short-running I/0O bound jobs stay near top

» Scheduling must be done between the queues
— Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
— Time slice:

» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.7

2/27/2024

Scheduling Details
—

Long-Running Compute
Tasks Demoted to
~ Low Priority

quantum = 16

Wil

—P‘é FCFS

« Countermeasure: user action that can foil intent of the OS designers

— For multilevel feedback, put in a bunch of meaningless I/O to keep job’s
priority high

— Of course, if everyone did this, wouldn’t work!
« Example of Othello program:

— Playing against competitor, so key was to do computing at higher priority the
competitors.

» Put in printf's, ran much faster!

Kubiatowicz CS162 © UCB Spring 2024 Lec 12.8

Case Study: Linux O(1) Scheduler

Kernel/Realtime Tasks User Tasks

0] 100 139
 Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
— Lower priority value = higher priority (for realtime values)

— Highest priority value = Lower priority (for nice values)

— All algorithms O(1)
» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

« Two separate priority queues: “active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the expired
queue, after which queues swapped

« Timeslice depends on priority — linearly mapped onto timeslice range
— Like a multi-level queue (one queue per priority) with different timeslice at each level
— Execution split into “Timeslice Granularity” chunks — round robin through priority

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.9

Linux O(1) Scheduler

CPU-X Expired CPU-X Active
runqueue rungueue
= - W * Lots of ad-hoc heuristics
o, B, oriority 2 —Try to boost priority of
a P > Real-time task priorities I/O_bound tasks
L i P J —Try to boost priority of
> —r— > ——
§ 5 = starved tasks
; =1 Priority 101 %‘ =t Priority 101 '
) .) - > User task prorities

=t Prionty 140 =+—> Priority 140 [

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.10

O(1) Scheduler Continued

* Heuristics
— User-task priority adjusted +5 based on heuristics
» p->sleep _avg = sleep _time — run_time
» Higher sleep_avg = more I/O bound the task, more reward (and vice versa)
— Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time

» IC is used to provide hysteresis to avoid changing interactivity for temporary changes in
behavior

— However, “interactive tasks” get special dispensation
» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too long...
* Real-Time Tasks
— Always preempt non-RT tasks
— No dynamic adjustment of priorities
— Scheduling schemes:
» SCHED_FIFO: preempts other tasks, no timeslice limit

» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same priority
2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.11

So, Does the OS Schedule Processes or Threads?

Many textbooks use the “old model™—one thread per process
Usually it's really: threads (e.g., in Linux) but can be task groups (also Linux)

Note: switching threads vs. switching processes incurs different costs:
— Switch threads: Save/restore registers

— Switch processes: Change active address space too!
» Expensive
» Disrupts caching

Recall, However: Simultaneous Multithreading (or “Hyperthreading”)

— Different threads interleaved on a cycle-by-cycle basis and can be in different
processes (have different address spaces)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.12

Administrivia

89
81 78
60
39
20
6 2
——
30 40 50 60 70 80 90

100

4

1

0 10 20

Midterm 1 results: Mean: 52.4, StdDev: 15.0, Min: 9.6, Max: 93.2!

Project 1 due tomorrow (Wednesday, 2/28)
— Code and final report

Also due Tomorrow: Peer evaluations
— These are a required mechanism for evaluating group dynamics
— Project scores are a zero-sum game

» In the normal/best case, all partners get the same grade

» In groups with issues, we may take points from non-participating group members and give
them to participating group members!

Homework 3:

— Due Tuesday 3/5

— Can be done in Rust (if you want!)
2/27/2024 Kubiatowicz C$162 © UCB Spring 2024 Lec 12.13

Multi-Core Scheduling

 Algorithmically, not a huge difference from single-core scheduling

» Implementation-wise, helpful to have per-core scheduling data structures
— Cache coherence

« Affinity scheduling: once a thread is scheduled on a CPU, OS tries to
reschedule it on the same CPU

— Cache reuse, branch prediction
— Example for O(1) scheduler: 1 set of queues/core with background rebalancing

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.14

Recall: Spinlocks for multiprocessing

Spinlock implementation:

int value = @; // Free
Acquire() {
while (test&set(&value)) {}; // spin while busy

}
Release() {

value = 0; // atomic store
}

Spinlock doesn’t put the calling thread to sleep—it just busy waits
— When might this be preferable?
» Waiting for limited number of threads at a barrier in a multiprocessing (multicore) program
» Wait time at barrier would be greatly increased if threads must be woken inside kernel

Every test&set () is a write, which makes value ping-pong around between core-local caches
(using lots of memory!)

— So —really want to use test&test&set() !

As we discussed in Lecture 8, the extra read eliminates the ping-ponging issues:

// Implementation of test&test&set():
Acquire() {
do {
while(value); // wait until might be free
} while (test&set(&value)); // exit if acquire lock

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.15

Gang Scheduling and Parallel Applications

* When multiple threads work together on a multi-core '\/\/\’
system, try to schedule them together :’ ‘\

— Makes spin-waiting more efficient (inefficient to spin-wait

for a thread that’s suspended) CAASS

— Multiple phases of parallel and serial execution \‘

- Additionally: OS informs a parallel program how many _\/\/» |
processors its threads are scheduled on (Scheduler |
Activations)

— Application adapts to number of cores that it has scheduled

— “Space sharing” with other parallel programs can be more
efficient, because parallel speedup is often sublinear with the
number of cores

\ i
' i
' i
| 1
! i
\W

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.16

Real-Time Scheduling

» Goal: Predictability of Performance!
— We need to predict with confidence worst case response times for systems!

— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)
— Real-time is about enforcing predictability, and does not equal fast computing!!!
» Hard real-time: for time-critical safety-oriented systems
— Meet all deadlines (if at all possible)
— Ideally: determine in advance if this is possible

— Earliest Deadline First (EDF), Least Laxity First (LLF),
Rate-Monitonic Scheduling (RMS), Deadline Monotonic Scheduling (DM)

« Soft real-time: for multimedia

— Attempt to meet deadlines with high probability
— Constant Bandwidth Server (CBS)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.17

« Tasks are preemptable, independent with arbitrary arrival (=release) times
« Tasks have deadlines (D) and known computation times (C)

Example: Workload Characteristics

« Example Setup:

2/27/2024

Tl
T2
T3

T4

w

w

Kubiatowicz CS162 © UCB Spring 2024

Lec 12.18

Example: Round-Robin Scheduling Doesn’t Work

T4 I |] " l

w

'

L

Time

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.19

Earliest Deadline First (EDF)

« Tasks periodic with period P and computation C in each period: (P;, C;) for
each task i

* Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the absolute
deadline is (i.e. D!** = D} + P;for each task!)

— The scheduler always schedules the active task with the closest absolute deadline

=D . — 1 = . — 1 = 1 =
I,=0(2) T—- | 1 . 1 -—o—-—»
=021 — 1 . . e

0 5

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.20

EDF Feasibility Testing

« Even EDF won’t work if you have too many tasks
* For n tasks with computation time C and deadline D, a feasible schedule

exists if:
n
C;
> () =1
.\ D;
1=1

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.21

Ensuring Progress

Starvation: thread fails to make progress for an indefinite period of time

Starvation # Deadlock because starvation could resolve under right
circumstances

— Deadlocks are unresolvable, cyclic requests for resources

Causes of starvation:
— Scheduling policy never runs a particular thread on the CPU
— Threads wait for each other or are spinning in a way that will never be resolved

Let’s explore what sorts of problems we might encounter and how to avoid
them...

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.22

Strawman: Non-Work-Conserving Scheduler

» A work-conserving scheduler is one that does not leave the CPU idle when
there is work to do

* A non-work-conserving scheduler could trivially lead to starvation

* In this class, we’ll assume that the scheduler is work-conserving (unless
stated otherwise)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.23

Strawman: Last-Come, First-Served (LCFS)

« Stack (LIFO) as a scheduling data structure
— Late arrivals get fast service
— Early ones wait — extremely unfair
— In the worst case — starvation
« When would this occur?
— When arrival rate (offered load) exceeds service rate (delivered load)
— Queue builds up faster than it drains

* Queue can build in FIFO too, but “serviced in the order received”...

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.24

Is FCFS Prone to Starvation?

Scheduled Task (process, thread)

g N] ! ! 1 1 |

m >
g .
@] %T BN I S S s e B . time
o)) I I EE e 7 7 1 [|

=] B I BN B e e

= arrivals I O N o

- 1 I N [

© [

O

=

T}

()

« |f a task never yields (e.g., goes into an infinite loop), then other tasks
don’t get to run

* Problem with all non-preemptive schedulers...
— And early personal OSes such as original MacOS, Windows 3.1, etc

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.25

Is Round Robin (RR) Prone to Starvation?

« Each of N processes gets ~1/N of CPU (in window)
— With quantum length Q ms, process waits at most (N-7)*Q ms to run again
— So a process can'’t be kept waiting indefinitely

« So RRis fair in terms of waiting time

— Not necessarily in terms of throughput... (if you give up your time slot early,
you don’t get the time back!)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.26

Is Priority Scheduling Prone to Starvation?

* Recall: Priority Scheduler always runs the | Priority 3 F={Job 1 |=»{Job2 }={Job 3
thread with highest priority Priority 2 = Job 4
— Low priority thread might never run! Priority 1
— Starvation... Priority 0 [==»|Job5 t=»{Job 6 = Job 7

» But there are more serious problems as well...
— Priority inversion: even high priority threads might become starved

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.27

Priority Inversion

Priority 3

Priority 2

Priority 1

« At this point, which job does the scheduler choose?
« Job 3 (Highest priority)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.28

Priority Inversion

Priority 3 -._ Acquire()

Priority 2

™
“
=~

Priority 1

« Job 3 attempts to acquire lock held by Job 1

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.29

Priority Inversion

Priority 3

Priority 2

Priority 1

« At this point, which job does the scheduler choose?
« Job 2 (Medium Periority)
* Priority Inversion

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.30

Priority Inversion

Where high priority task is blocked waiting on low priority task
Low priority one must run for high priority to make progress
Medium priority task can starve a high priority one

When else might priority lead to starvation or “live lock™?

High Priority Low Priority

c while (try_lock) { lock.acquire(..) |

} lock.release(..)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.31

One Solution: Priority Donation/Inheritance

Priority 3

Priority 2

Priority 1

« Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.32

One Solution: Priority Donation/Inheritance

Priority 3 - Release()

Priority 2 \‘\\
Priority 1 e

« Job 3 temporarily grants Job 1 its “high priority” to run on its behalf

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.33

One Solution: Priority Donation/Inheritance

Priority 3 k. Acquire()

-—y
o

Priority 2 Job2 | U
Priority 1 Job 1

« Job 1 completes critical section and releases lock
« Job 3 acquires lock, runs again Project 2:
« How does the scheduler know? Scheduling

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.34

Case Study: Martian Pathflnder Rover

July 4, 1997 — Pathfinder lands on Mars
— First US Mars landing since Vikings in 1976; first rover

— Novel delivery mechanism: inside air-filled balloons
bounced to stop on the surface from orbit!

And then...a few days into mission...:
— Multiple system resets occur to realtime OS (VxWorks)
— System would reboot randomly, losing valuable time and progress

« Problem? Periority Inversion! Priority 2 =/ Data Distribution Task: needs lock |
— Low priority task grabs mutex trying to Priority 1_[={ Lots of random medium stuff
communicate with high priority task: Priority O [==p{ ASUMET collector: grab lock

— Realtime watchdog detected lack of forward progress and invoked reset to safe state
» High-priority data distribution task was supposed to complete with regular deadline

Solution: Turn priority donation back on and upload fixes!

Original developers turned off priority donation (also called priority inheritance)

— Worried about performance costs of donating priority!
2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.35

Are SRTF and MLFQ Prone to Starvation?

—
quantum = 8 -
—L\Long-Running Compute
Tasks Demoted to

_»r _?/ Low Priority
quantum = 16 —
—Vr FCFS

* In SRTF, long jobs are starved in favor of short ones
— Same fundamental problem as priority scheduling
 MLFQ is an approximation of SRTF, so it suffers from the same problem

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.36

Cause for Starvation: Priorities?

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

» But priorities were a means, not an end

« Our end goal was to serve a mix of CPU-bound, I/O bound, and Interactive
jobs effectively on common hardware

— Give the 1/0O bound ones enough CPU to issue their next file operation and
wait (on those slow discs)

— Give the interactive ones enough CPU to respond to an input and wait (on
those slow humans)

— Let the CPU bound ones grind away without too much disturbance

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.37

Recall: Changing Landscape...

Computers
1 crunching,
1:106 Data Storage,
Massive Inet
Services,
Bell’s Law: New ML, ...
computer class 1:103
Productivity,

every 10 years

 Interactive

1:1
Streaming
from/to the
103:1 physical
world
years Mote
! The Internet
of Things!

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.38

Changing Landscape of Scheduling

 Priority-based scheduling rooted in “time-sharing”
— Allocating precious, limited resources across a diverse workload
» CPU bound, vs interactive, vs |/0O bound

« 80’s brought about personal computers, workstations, and servers on
networks

— Different machines of different types for different purposes
— Shift to fairness and avoiding extremes (starvation)

« 90’s emergence of the web, rise of internet-based services, the data-
center-is-the-computer

— Server consolidation, massive clustered services, huge flashcrowds
— It's about predictability, 95t percentile performance guarantees

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.39

Key Idea: Proportional-Share Scheduling

* The policies we’ve studied so far:
— Always prefer to give the CPU to a prioritized job
— Non-prioritized jobs may never get to run

 Instead, we can share the CPU proportionally
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 12.40

Lottery Scheduling

« Simple Idea:
— Give each job some number of lottery tickets
— On each time slice, randomly pick a winning ticket

—On average, CPU time is proportional to number of tickets
given to each job

« How to assign tickets?
— To approximate SRTF, short running jobs get more, long running jobs get fewer

—To avoid starvation, every job gets at least one ticket (everyone makes
progress)

« Advantage over strict priority scheduling: behaves gracefully as load changes

— Adding or deleting a job affects all jobs proportionally, independent of how
many tickets each job possesses

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.41

Lottery Scheduling Example (Cont.)

* Lottery Scheduling Example
— Assume short jobs get 10 tickets, long jobs get 1 ticket

short jobs/ | % of CPU each | % of CPU each
long jobs short jobs gets | long jobs gets
1/1 91% 9%
0/2 N/A 50%
2/0 950% N/A
10/1 9.9% 0.99%
1/10 950% 5%

— What if too many short jobs to give reasonable response time?

» If load average is 100, hard to make progress
» One approach: log some user out

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024

Lec 12.42

Lottery Scheduling: Simple Mechanism

10 ° tlcket Z N

 Pickanumberdinl1 .. N,,, asthe
random “dart”

 Jobs record their N, of allocated tickets
* Order them by N,

Select the first j such that)}, N. up to j
exceeds d.

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.43

Unfairness

L « E.g., Given two jobs A and B of same run time

s (# Qs) that are each supposed to receive 50%,
2 e U = finish time of first / finish time of last
%j » As a function of run time
5 04

0.2 -

0.0 T T 1

1 10 100 1000

Job Length
Figure 9.2: Lottery Fairness Study

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.44

Stride Scheduling

« Achieve proportional share scheduling without resorting to randomness,
and overcome the “law of small numbers” problem.

. “Stride” of each job is 2V

l

— The larger your share of tickets, the smaller your stride
— Ex: W =10,000, A=100 tickets, B=50, C=250
— A stride: 100, B: 200, C: 40
« Each job has a “pass” counter
« Scheduler: pick job with lowest pass, runs it, add its stride to its pass
« Low-stride jobs (lots of tickets) run more often
— Job with twice the tickets gets to run twice as often
« Some messiness of counter wrap-around, new jobs, ...

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.45

Conclusion

Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms
— Automatic promotion/demotion of process priority in order to approximate SJF/SRTF

Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of processes?
Priority Inversion

— A higher-priority task is prevented from running by a lower-priority task

— Often caused by locks and through the intervention of a middle-priority task

Proportional Share Scheduling
— Give each job a share of the CPU according to its priority
— Low-priority jobs get to run less often
— But all jobs can at least make progress (no starvation)

2/27/2024 Kubiatowicz CS162 © UCB Spring 2024 Lec 12.46

