
Discussion 3: Mutual Exclusion, Condition Variables

February 9, 2024

Contents

1 Mutual Exclusion 2
1.1 Synchronization Stuffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Test and Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Shared Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Condition Variable 10
2.1 Condition Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Office Hours Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

1 Mutual Exclusion

Oftentimes, a multithreaded program will involve threads having shared states, meaning threads will share
data with one another. After all, that is one of the main purposes of using a multithreaded program since
all threads in the same process share the same address space. These are known as cooperating threads.
If threads do not share any states, they are known as independent threads.

Cooperating threads pose a difficult challenge of synchronization. Since threads are not guaranteed to be
scheduled in any order, there is no deterministic output which we can expect. This is known as a race
condition where the output is dependent on the interleaving of operations of different threads.

To ensure cooperation between threads (i.e. synchronization), we can use atomic operations which
always run to completion or not at all. Atomic operations are indivisible, meaning they cannot be stopped
in the middle nor can the state be modified in the middle. On most machines, memory loads and stores are
typically atomic operations.

A popular and basic way of synchronization is mutual exclusion where only one thread does a particular
action at a time. In essence, one thread excludes the other while doing its task. The code that runs as part
of mutual exclusion is known as the critical section. Critical sections allows for the illusion of each thread
operating atomically on a shared state. To allow for maximum concurrency, critical sections should be as
short as possible.

Locks

A lock is a synchronization variable that provides mutual exclusion. When one thread holds a lock, no other
thread can hold it (i.e. other threads are excluded).

Locks provide two atomic operations.

Acquire / Lock
Waits until the lock is free, then mark it as busy. When returning from this call, the thread is said to
be holding the lock.

Release / Unlock
Marks lock as free. When returning from this call, the thread no longer holds the lock. This can only
be called if the thread is holding the lock.

When using locks, the code in between an acquire and release is the critical section. A typical workflow will
involve acquiring the lock, performing memory operations on shared data, then releasing the lock.

Semaphores

A semaphore is a synchronization variable with a nonnegative integer.

Semaphores provide two atomic operations.

Down / Wait / P
Waits for semaphore to become positive, then decrements it by 1.

Up / Post / V
Increments the semaphore by 1.

Note that you are technically not allowed to examine the value of a semaphore or set it to a specific value.
While most implementations will allow you to do this since it’s just a member of a struct, this is not the use
case of a semaphore.

While a semaphore can be used like a lock for mutual exclusion, it has another workflow of a scheduling con-
straint where one thread needs to wait for another thread to terminate. The two workflows are demonstrated
below.

2



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

Mutual Exclusion

1. Initialize semaphore to 1.

2. Down semaphore when entering a critical sec-
tion.

3. Up semaphore when exiting critical section.

Scheduling

1. Initialize semaphore to 0.

2. Down semaphore in the waiting thread.

3. After finishing desired work, up semaphore in
the working thread.

1.1 Synchronization Stuffs

1. It’s the year 3162. Floopies are the widely recognized galactic currency. Floopies are represented in
digital form only, at the Central Galactic Floopy Corporation (CGFC). You receive some inside intel
from the CGFC that they have a Galaxynet server running on some old OS called x86 Ubuntu 14.04
LTS. Anyone can send requests to it. Upon receiving a request, the server creates a POSIX thread to
handle the request. In particular, you are told that sending a transfer request will create a thread that
will run the following function immediately, for speedy service.

1 typedef struct account {

2 /* ... */

3 int balance;

4 /* ... */

5 } account_t;

6

7 void transfer(account_t *donor, account_t *recipient, float amount) {

8 assert (donor != recipient);

9 if (donor->balance < amount) {

10 printf("Insufficient funds.\n");

11 return;

12 }

13 donor->balance -= amount;

14 recipient->balance += amount;

15 }

cgfc.c

Describe how a malicious user might exploit some unintended behavior. What changes could you make
to the CGFC to defend against exploits?

We observe that the money transfer is not an atomic instruction, meaning we can break down
a money transfer into further lines.

donor->balance -= amount;

recipient->balance += amount;

temp = donor->balance;

temp = temp - amount;

donor->balance = temp;

temp = recipient->balance;

temp = temp + amount;

recipient->balance = temp;

While the temp = temp - amount and temp = temp + amount are still not technically atomic
operations, this level of granularity suffices to see race conditions.

Let’s say we have two accounts of account t* named alice and bob. We send two requests:
transfer(alice, bob, 5) and transfer(bob, alice, 5). Let’s say the following interleav-
ing of threads occurs.

3



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

/* transfer(alice, bob, 5) */

temp1 = alice->balance;

temp1 = temp1 - 5;

alice->balance = temp1;

temp1 = bob->balance;

temp1 = temp1 + 5;

bob->balance = temp1;

/* transfer(bob, alice, 5) */

temp2 = bob->balance;

temp2 = temp2 - 5;

bob->balance = temp2;

temp2 = alice->balance;

temp2 = temp2 + 5;

alice->balance = temp2;

This will result in bob->balance being 10 while alice->balance being 5, essentially making
money out of thin air.

Another possible race condition achieves a negative balance. If there is a thread switch after
the donor->balance < amount check succeeds, the donor->balance may fall below amount.
However, the transaction will still go through, resulting in money transfer that the donor does
not have.

The solution is to simply make the entire function a critical section. A lock can be acquired at
the first line of the function and released at the last line.

2. A recent popular game is having issues with its servers lagging heavily due to too many players being
connected at a time. Below is the code that a player runs to play on a server:

1 void play_session(struct server* s) {

2 connect(s);

3 play();

4 disconnect(s);

5 }

game server.c

After testing, it turns out that the servers can run without lagging for a max of up to 1000 players
connected concurrently. How can you use synchronization to enforce a strict limit of 1000 players
connected at a time? Assume that a game server can create synchronization variables and share them
amongst the player threads.

Introduce a semaphore for each server, initialized to 1000, to control the ability to connect to
the game. A player will down the semaphore before connecting and up the semaphore after
disconnecting. The order here is important - downing the semaphore after connecting but before
playing means that there is no block on the connect() call, and upping the semaphore before
disconnecting could lead to “zombie” players, who were preempted before disconnecting. Both
of these cases mean that the limit of 1000 could be violated.

4



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

1.2 Test and Set

Suppose the test and set function is an atomic operation.

1 int value = 0;

2 int hello = 0;

3

4 int test_and_set(int* value) {

5 int old_value = *value;

6 *value = 1;

7 return old_value;

8 }

9

10 void print_hello() {

11 while (test_and_set(&value));

12 hello += 1;

13 printf("Child thread: %d\n", hello);

14 value = 0;

15 pthread_exit(0);

16 }

17 void main() {

18 pthread_t thread1;

19 pthread_t thread2;

20 pthread_create(&thread1, NULL, &print_hello, NULL);

21 pthread_create(&thread2, NULL, &print_hello, NULL);

22 while (test_and_set(&value));

23 printf("Parent thread: %d\n", hello);

24 value = 0;

25 }

test and set.c

Assume the following sequence of events.

1. main starts running and creates both threads and is then context switched right after.

2. Thread2 is scheduled and runs until after it increments hello. It is then switched.

3. Thread1 runs until it is switched.

4. Main thread resumes and runs until it is switched.

5. Thread2 runs to completion and exits.

6. Main thread runs to completion but doesn’t exit.

7. Thread1 runs to completion.

Answer the following questions.

1. Why is this sequence of events possible?

In steps 3 and 4, the main thread and thread1 make no progress. They can only run to
completion after thread2 resets value to 0.

2. For steps where test and set is called, what does it return?

In step 2, thread2 runs, being the first thread to modify value. Since value is initialized to
0, test and set) will return 0 and only be called once as the while loop condition will not be
satisfied. Now, value is set to 1.

5



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

In steps 3 and 4, both thread1 and main thread will not advance past the while loop (in their
respective methods) since value is 1. Thread2 has not yet ran its line of value = 0.

After thread2 runs to completion in step 5, main thread will run to completion in step 6. Since
value = 0 line from thread2 will have ran, test and set will now return 0 and allow main to
advance. Note that main also has a value = 0 line at the end before it exits, meaning thread1
will also run the entirety of its method since test and set will return 0.

3. What is the output of the program?

Child thread: 1

Parent thread: 1

Child thread: 2

4. What is a major issue with this implementation of synchronization?

Using a while loop with test and set involves a ton of busy waiting where the CPU is being
used to essentially do nothing. We should let the thread sleep while it can’t make any progress,
so the CPU is available for use by another thread.

1.3 Shared Data

This problem is designed to help you implement the wait syscall in Project User Programs by implementing
a wait functionality that allows the main thread to wait for another thread to finish writing some data.

Assume you don’t have access to pthread join for this problem. Instead, you’re going to use synchronization
primitives, namely locks and semaphores.

You’re going to implement three functions to initialize the shared struct and synchronize the 2 threads.
initialize shared data will initialize shared data. wait for data (called by the main thread) will block
until the data is available. save data (called by the other thread) will write 162 to the data member of
shared data. Another requirement is that the shared data needs to be freed once as soon as it is no longer
in use. When using synchronization primitives, the critical section should be as few lines as possible while
still ensuring a race free environment.

Consider you’re given the following code.

1 typedef struct shared_data {

2 sem_t semaphore;

3 pthread_mutex_t lock;

4 int ref_cnt;

5 int data;

6 } shared_data_t;

7

8 void initialize_shared_data(shared_data_t* shared_data) {

9 _______________________;

10 _______________________;

11 _______________________;

12 shared_data->data = -1;

13 }

14

15 int wait_for_data(shared_data_t* shared_data) {

16 _______________________;

17 int data = shared_data->data;

6



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

18 _______________________;

19 int ref_cnt = --shared_data->ref_cnt;

20 _______________________;

21 if (ref_cnt == 0)

22 _______________________;

23 return data;

24 }

25

26 void* save_data(void* shared_pg) {

27 _______________________;

28 shared_data->data = 162;

29 _______________________;

30 _______________________;

31 int ref_cnt = --shared_data->ref_cnt;

32 _______________________;

33 if (ref_cnt == 0)

34 _______________________;

35 return NULL;

36 }

37

38 int main() {

39 void *shared_data = malloc(sizeof(shared_data_t));

40 initialize_shared_data(shared_data);

41 pthread_t tid;

42 int error = pthread_create(&tid, NULL, &save_data, shared_data);

43 int data = wait_for_data(shared_data);

44 printf("Parent: Data is %d\n", data);

45 return 0;

46 }

wait shared.c

1. Explain the purpose of each member in the shared data t struct.

semaphore is used to implement the scheduling workflow. A waiting thread downs the semaphore
while the thread that saves the data ups the semaphore.

lock allows for mutual exclusion on members in the struct that can be modified by both threads.

ref cnt allows for reference counting, which is an indicator for how many threads still hold a
reference to this struct. Once the reference count reaches 0, we can safely deallocate the struct
from memory.

data is the actual data.

2. Fill in the missing lines in initialize shared data to correctly initialize the members of shared data.

semaphore needs to be initialized to 0. When the main thread is waiting for the data to be
updated it needs to block until the other thread ups the semaphore. There’s no guarantee of
thread execution order, meaning the main thread could end up downing the semaphore first.

lock is initialized with default attributes which is specified by the second argument as NULL.

ref cnt is initialized to 2 since there are two threads who will have access to the shared data.

1 void initialize_shared_data(shared_data_t* shared_data) {

2 sem_init(&shared_data->semaphore, 0, 0);

3 pthread_mutex_init(&shared_data->lock, NULL);

4 shared_data->ref_cnt = 2;

7



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

5 shared_data->data = -1;

6 }

wait shared initialize.c

3. Fill in the missing lines in wait for data for the main thread to correctly wait for the other thread
until the data is updated.

The main thread waits for the other thread to finish updating by downing the semaphore. As
initialized, the semaphore will start at 0, meaning the main thread will wait until its value is 1
before it can down it.

Since ref cnt can be modified by either thread concurrently, it needs to be put in a critical
section by surrounding it with locks.

Finally, if ref cnt is 0, we need to make sure to free the shared data.

1 int wait_for_data(shared_data_t* shared_data) {

2 sem_wait(&shared_data->semaphore);

3 int data = shared_data->data;

4 pthread_mutex_lock(&shared_data->lock);

5 int ref_cnt = --shared_data->ref_cnt;

6 pthread_mutex_unlock(&shared_data->lock);

7 if (ref_cnt == 0)

8 free(shared_data);

9 return data;

10 }

wait shared wait.c

4. Fill in the missing lines in save data for the other thread to correctly update the data.

Since this function is called through pthread create, we need to cast the argument shared pg

to a shared data t* type.

After we set the desired value of shared data->data, we up the the semaphore, so the parent
no longer waits. Keep in mind this does not guarantee the parent will run automatically since
as said before, there are no guarantees of exeuction orders.

Just like we did in wait for data, we need to decrement the ref cnt in a race free manner
and make sure to free shared data if necessary.

1 void* save_data(void* shared_pg) {

2 shared_data_t* shared_data = (shared_data_t*) shared_pg;

3 shared_data->data = 162;

4 sem_post(&shared_data->semaphore);

5 pthread_mutex_lock(&shared_data->lock);

6 int ref_cnt = --shared_data->ref_cnt;

7 pthread_mutex_unlock(&shared_data->lock);

8 if (ref_cnt == 0)

9 free(shared_data);

10 return NULL;

11 }

wait shared save.c

5. Why does shared data->data not need to be surrounded by locks when reading and writing to it in
wait for data and save data?

8



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

The semaphore guarantees that the main thread will never access shared data->data before
the other thread sets it. Similarly, shared data->data is never modified by the other thread
afterwards, so the main thread is guaranteed to have the correct value by the time it is unblocked
from the semaphore.

9



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

2 Condition Variable

Condition variables are synchronization variables that let a thread efficiently wait for a change to a shared
state. They store a queue of threads such that the waiting threads are allowed to sleep inside the critical
section which is in contrast to other synchronization variables like semaphores.

Condition variables are used in conjunction with a lock which together form a monitor.

Condition variables provide the following operations. For all these methods, the thread calling them must
be holding the lock.

Wait
Atomically releases lock and suspends execution of calling thread.

Signal
Wake up the next waiting thread in the queue.

Broadcast
Wake up all waiting threads in the queue.

Infinite Synchronized Buffer

Consider an infinite synchronized buffer problem of vending machines where there’s a producer and consumer.
”Infinite” refers to the fact that the machine has no limit on how much coke it can hold.

Lock bufferLock;

ConditionVar bufferCV;

Producer() {

bufferLock.acquire();

put 1 coke in machine

bufferCV.signal();

bufferLock.release();

}

Consumer() {

bufferLock.acquire();

while (machine is empty)

bufferCV.wait(bufferLock);

take 1 coke out

bufferLock.release();

}

By using condition variables, we can avoid busy waiting inside a critical section.

Semantics

Different semantics define signal and wait differently.

When a thread is signaled using Hoare semantics, the ownership of the lock is immediately transferred
to the waiting thread. Furthermore, the execution of this thread resumes immediately. After this thread
releases the lock, ownership of the lock is transferred back to the signaling thread. As a result, signaling in
Hoare semantics can be thought of as an atomic operation.

On the other hand, Mesa semantics makes no guarantees about the execution order when a thread is
signaled.

This leads to a subtle but important difference in the code. Using the same bounded buffer example as
before,

10



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

Hoare

if (machine is empty)

bufferCV.wait(bufferLock);

take 1 coke out

Mesa

while (machine is empty)

bufferCV.wait(bufferLock);

take 1 coke out

We can use a if statement for Hoare semantics because we’re guaranteed an execution order between the
waiting and signaling thread. However, that is not the case for Mesa semantics, meaning between the time
the waiting thread is signalled and it actually executes, some other thread could have run in between and
rendered the condition false again, so a while loop is necessary.

2.1 Condition Check

1. Will this program compile/run?

1 pthread_mutex_t lock;

2 pthread_cond_t cv;

3 int hello = 0;

4 void print_hello() {

5 hello += 1;

6 printf("First line (hello=%d)\n", hello);

7 pthread_cond_signal(&cv);

8 pthread_exit(0);

9 }

10

11 void main() {

12 pthread_t thread;

13 pthread_create(&thread, NULL, (void *) &print_hello, NULL);

14 while (hello < 1)

15 pthread_cond_wait(&cv, &lock);

16 printf("Second line (hello=%d)\n", hello);

17 }

cv hello.c

This program will not run because the thread needs to be holding a lock before performing a
condition variable operation like wait or signal.

Moreover, the lock and condition variable was never initialized, which would lead to undefined
behavior.

2. Fill in the blanks such that the program always prints “Yeet Haw”. Assume the system behaves with
Mesa semantics.

1 int ben = 0;

2 _______________________;

3 _______________________;

4

5 void *helper(void *arg) {

6 _______________________;

7 ben += 1;

8 _______________________;

9 _______________________;

10 pthread_exit(NULL);

11 }

12

13 void main() {

14 pthread_t thread;

15 pthread_create(&thread, NULL, &helper, NULL);

11



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

16 pthread_yield();

17 _______________________;

18 _______________________;

19 _______________________;

20 if (ben == 1)

21 printf("Yeet Haw\n");

22 else

23 printf("Yee Howdy\n");

24 _______________________;

25 }

cv howdy.c

1 int ben = 0;

2 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

3 pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

4

5 void *helper(void *arg) {

6 pthread_mutex_lock(&lock);

7 ben += 1;

8 pthread_cond_signal(&cv);

9 pthread_mutex_unlock(&lock);

10 pthread_exit(NULL);

11 }

12

13 void main() {

14 pthread_t thread;

15 pthread_create(&thread, NULL, &helper, NULL);

16 pthread_yield();

17 pthread_mutex_lock(&lock);

18 while (ben != 1)

19 pthread_cond_wait(&cv, &lock);

20 if (ben == 1)

21 printf("Yeet Haw\n");

22 else

23 printf("Yee Howdy\n");

24 pthread_mutex_unlock(&lock);

25 }

cv howdy sol.c

2.2 Office Hours Queue

Suppose we want to use condition variables to control access to a CS162 (digital) office hours room for three
types of people: students, TAs, and professors. A person can attempt to enter the room (or will wait outside
until their condition is met), and after entering the room they can then exit the room. The follow are each
type’s conditions:

• Suppose professors get easily distracted and so they need solitude, with no other students, TAs, or
professors in the room, in order to enter the room.

• TAs don’t care about students being inside and will wait if there is a professor inside, but there can
only be up to 8 TAs inside (any more would clearly be imposters from CS161 or CS186).

• Students don’t care about other students or TAs being in the room, but will wait if there is a professor.

• Students and TAs are polite to professors, and will let a waiting professor in first.

12



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

To summarize the constraints,

• Professor must wait if anyone else is in the room

• TA must wait if there are already 8 TAs in the room

• TA must wait if there is a professor in the room or waiting outside

• Students must wait if there is a professor in the room or waiting outside

1 typedef struct room {

2 pthread_mutex_t lock;

3 pthread_cond_t student_cv;

4 int waiting_students, active_students;

5 pthread_cond_t ta_cv, prof_cv;

6 int waiting_tas, active_tas;

7 int waiting_profs, active_profs;

8 } room_t;

9

10 enter_room(room_t* room, int mode) {

11 pthread_mutex_lock(&room->lock);

12 if (mode == 0) {

13 _______________________;

14 _______________________;

15 _______________________;

16 _______________________;

17 _______________________;

18 room->active_students++;

19 } else if (mode == 1) {

20 _______________________;

21 _______________________;

22 _______________________;

23 _______________________;

24 _______________________;

25 room->active_tas++;

26 } else {

27 _______________________;

28 _______________________;

29 _______________________;

30 _______________________;

31 _______________________;

32 room->active_profs++;

33 }

34 pthread_mutex_unlock(&room->lock);

35 }

36

37 exit_room(room_t* room, int mode) {

38 pthread_mutex_lock(&room->lock);

39 if (mode == 0) {

40 room->active_students--;

41 _______________________;

42 _______________________;

43 _______________________;

44 } else if (mode == 1) {

45 room->active_tas--;

46 _______________________;

47 _______________________;

48 _______________________;

49 _______________________;

50 _______________________;

51 } else {

13



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

52 room->active_profs--;

53 _______________________;

54 _______________________;

55 _______________________;

56 _______________________;

57 _______________________;

58 _______________________;

59 _______________________;

60 _______________________;

61 _______________________;

62 }

63 pthread_mutex_unlock(&room->lock);

64 }

oh.c

1. Fill in enter room.

1 enter_room(room_t* room, int mode) {

2 pthread_mutex_lock(&room->lock);

3 if (mode == 0) {

4 while (room->active_profs + room->waiting_profs > 0) {

5 room->waiting_students++;

6 pthread_cond_wait(&room->student_cv, &room->lock);

7 room->waiting_students--;

8 }

9 room->active_students++;

10 } else if (mode == 1) {

11 while (room->active_profs + room->waiting_profs > 0 || room->active_tas >= TA_LIMIT

) {

12 room->waiting_tas++;

13 pthread_cond_wait(&room->ta_cv, &room->lock);

14 room->waiting_tas--;

15 }

16 room->active_tas++;

17 } else {

18 while (room->active_profs + room->active_tas + room->active_students > 0) {

19 room->waiting_profs++;

20 pthread_cond_wait(&room->prof_cv, &room->lock);

21 room->waiting_profs--;

22 }

23 room->active_profs++;

24 }

25 pthread_mutex_unlock(&room->lock);

26 }

oh enter.c

2. Fill in exit room.

1 exit_room(room_t* room, int mode) {

2 pthread_mutex_lock(&room->lock);

3 if (mode == 0) {

4 room->active_students--;

5 if (room->active_students + room->active_tas == 0 && room->waiting_profs > 0) {

14



CS 162 Spring 2024 Discussion 3 Mutual Exclusion, Condition Variables

6 pthread_cond_signal(&room->prof_cv);

7 }

8 } else if (mode == 1) {

9 room->active_tas--;

10 if (room->active_students + room->active_tas == 0 && room->waiting_profs > 0) {

11 pthread_cond_signal(&room->prof_cv);

12 } else if (room->active_tas < TA_LIMIT && room->waiting_tas) {

13 pthread_cond_signal(&room->ta_cv);

14 }

15 } else {

16 room->active_profs--;

17 if (room->waiting_profs) {

18 pthread_cond_signal(&room->prof_cv);

19 } else {

20 if (room->waiting_tas)

21 pthread_cond_broadcast(&room->ta_cv);

22 if (room->waiting_students)

23 pthread_cond_broadcast(&room->student_cv);

24 }

25 }

26 pthread_mutex_unlock(&room->lock);

27 }

oh exit.c

15


	Mutual Exclusion
	Synchronization Stuffs
	Test and Set
	Shared Data

	Condition Variable
	Condition Check
	Office Hours Queue


