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1 C

C is often the programming language of choice in operating systems. C grants programmers low-level access
to memory which is very useful. You’ll be reading and writing a lot of C code throughout this class.

Types

C is statically typed where types are known at compile time. However, C is also weakly typed meaning
you can cast between any types. This gives the necessary flexibility for working with low-level memory, but
it also opens up many avenues for errors if you’re not careful.

The primitive types include char, short, int, long, float, and double. The size of data types may vary
depending on the operating system, so it’s best to check using the operator sizeof.

Arrays, denoted with [] (e.g. int[]), are contiguous regions of memory of fixed size. Each element is the
size of the data type corresponding to that array. A string in C is just an array of characters with a last
element as null to indicate the end of the string.

Users can define compound data types using structs which are contiguous pieces of memory comprised of
multiple other data types.

Pointers are references that hold the address of an object in memory. Fundamentally, pointers are just
unsigned integers of size equal to the number of bits supported by the operating system. Prefixing a pointer
with * will return the value at the memory address that the pointer is holding. On the other hand, prefixing
a variable with & will return the memory address of the variable.

Memory

A typical C program’s memory is divided into five segments.

Segment Purpose
Text Machine code of the compiled program
Initialized Data Initialized global and static memory
Uninitialized Data Uninitialized global and static memory
Heap Dynamically allocated memory
Stack Local variables and argument passing

In general, memory can be thought of as a giant array with elements of one byte where a memory address
indexes into this array.

Unlike stack memory, heap memory needs to be explicitly managed by the user. Memory can be allocated
in the heap using malloc, calloc, or realloc. These all return a pointer to a chunk of memory in heap
that is the size of the amount requested. When the memory is no longer being used, it needs to be explicitly
released using free.

GNU Debugger (GDB)

GNU Debugger (GDB) is a powerful tool to debug your programs. While you may have skidded by CS
61C without using it, the complicated codebase for this class will require you to be proficient with GDB.
Help will not be given to those who are not able to use GDB.

The general workflow of using GDB is as follows.

1. Compile the program using the -g flag.

2. Start GDB using gdb <executable>.

3. Set breakpoints using break <linenum>. You can also break at functions by using break <func>.

4. Run program with run. If the program takes in arguments, pass in those (i.e. run arg1 arg2).
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5. Once you hit your breakpoint, examine using print. Other commands like display, watch, set, and
many more will come in handy. You can also step line by line using next.

While you don’t have to memorize all the GDB commands, you’ll grow familiar with them the more you use
them. When looking for certain functionality, check out the GDB User Manual1.

1.1 Concept Check

1. Consider a valid double pointer char** dbl char in a 32-bit system. What is sizeof(*dbl char)?

Bonus question: Does sizeof(*dbl char) error if dbl char == NULL?

2. Consider strings initialized as

char* a = "162 is the best";

char b[] = "162 is the best";

Are a and b different?

3. Consider the following struct declaration:

struct point {

int x;

int y;

};

Point out a few differences between

struct point p;

printf("%d", p.x = 1);

and

struct point* p;

printf("%d", p->x = 1);

1https://sourceware.org/gdb/current/onlinedocs/gdb/
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1.2 Headers

1 #include <stdio.h>

2 #include "lib.h"

3

4 int main(int argc, char** argv) {

5 helper_args_t helper_args;

6 helper_args.string = argv[0];

7 helper_args.target = '/';
8 char* result = helper_func(&helper_args);

9 printf("%s\n", result);

10 return 0;

11 }

app.c

1 typedef struct helper_args {

2 #ifdef ABC

3 char* aux;

4 #endif

5 char* string;

6 char target;

7 } helper_args_t;

8 char* helper_func(helper_args_t* args);

lib.h

1 #include "lib.h"

2

3 char* helper_func(helper_args_t* args) {

4 int i;

5 for (i = 0; args->string[i] != '\0'; i++)

6 if (args->string[i] == args->target)

7 return &args->string[i + 1];

8 return args->string;

9 }

lib.c

You build the program on a 64-bit machine as follows.

> gcc -c app.c -o app.o

> gcc -c lib.c -o lib.o

> gcc app.o lib.o -o app

1. What is the size of a helper args t struct?

2. Suppose you add #define ABC at the top of lib.h. What is the size of a helper args t struct?

3. Suppose we build the program in a different way with the original files (i.e. none of the changes from
previous question apply).

> gcc -DABC -c app.c -o app.o

> gcc -c lib.c -o lib.o

> gcc app.o lib.o -o app

The program will now exhibit undefined behavior. What is the issue?
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1.3 Debugging Segmentation Faults

Observe the following program from singer.c which aims to sort a string using quicksort. The program
will use a string provided as the argument or defaults to "IU is the best singer!" if none is provided.

When the program is compiled and run, we get the output on the right. Use GDB to fix the issue.

To play with the following code yourself, you can fork the Discussion 0 Repl2.

4 void swap(char* a, int i, int j) {

5 char t = a[i];

6 a[i] = a[j];

7 a[j] = t;

8 }

9

10 int partition(char* a, int l, int r){

11 int pivot = a[l];

12 int i = l, j = r+1;

13

14 while (1) {

15 do

16 ++i;

17 while (a[i] <= pivot && i <= r);

18

19 do

20 --j;

21 while (a[j] > pivot);

22

23 if (i >= j)

24 break;

25

26 swap(a, i, j);

27 }

28

29 swap(a, l, j);

30

31 return j;

32 }

33

34 void sort(char* a, int l, int r){

35 if (l < r){

36 int j = partition(a, l, r);

37 sort(a, l, j-1);

38 sort(a, j+1, r);

39 }

40 }

41

42 int main(int argc, char** argv){

43 char* a = NULL;

44

45 if (argc > 1)

> ./singer "Taeyeon is the best singer!"

Unsorted: "Taeyeon is the best singer!"

Sorted : " !Tabeeeeeghiinnorssstty"

> ./singer

Unsorted: "IU is the best singer!"

Segmentation fault (core dumped)

2https://replit.com/@cs162-staff/intro
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46 a = argv[1];

47 else

48 a = "IU is the best singer!";

49

50 printf("Unsorted: \"%s\"\n", a);

51 sort(a, 0, strlen(a) - 1);

52 printf("Sorted : \"%s\"\n", a);

53 }

singer.c

1. We want to debug the program using GDB. How should we compile the program?

2. When running the program without any arguments (i.e. using the default argument), what line does
the segfault happen? Describe the memory operations happening in that line.

3. Run the program with and without an argument and observe the memory address of a in the segfaulting
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line. Why are the memory addresses so different?

4. How should the code be changed to fix the segfault?

ahttps://man7.org/linux/man-pages/man3/strdup.3.html
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2 x86

x86 is a family of instruction set architectures (ISA) developed by Intel. Unlike RISC-V from CS 61C, x86
is based on based on the complex instruction set computer (CISC) architecture. x86 being a family of ISAs
means there are a variety of different dialects of this language. In this class, we will focus on the 32-bit
ISA called IA-32 or i386 which is the common denominator for all 32-bit x86 processors and hence used in
Pintos. While heavily related, this should not be confused with the 32-bit microprocessor i386, also known
as Intel 80386). However, we will still occasionally mention the 64-bit ISA x86-64 as you may come across
during some non-Pintos assignments.

Registers

Registers are small storage spaces directly on the processor, allowing for fast memory access.

Recall from CS 61C that RISC-V had 31 general purpose registers (GPR) x0 - x31 with appropriate
ABI names (e.g. x2 = sp for stack pointer). Due to architectural differences, x86 only has 8 GPRs.

Register Name Purpose
ax Accumulator I/O port access, arithmetic, interrupt calls
bx Base Base pointer for memory access
cx Counter Loop counting, bit shifts
dx Data I/O port access, arithmetic, interrupt calls
sp Stack Pointer Top address of stack
bp Base Pointer Base address of stack
si Source Index Source for stream operations (e.g. string)
di Destination Index Destination for stream operations (e.g. string)

Due to x86’s 16-bit history, the GPRs started as 16-bits and were extended to 32-bits with the e prefix (e.g.
eax for ax) and 64-bits with the r prefix (e.g. rax for ax). Each 16-bit GPR can be addressed by the 8-bit
LSB (i.e. lower 8 bits) by replacing the last letter with l (e.g. al for ax). ax, cx, dx, and bx can also be
addressed by the 8-bit MSB (i.e. higher 8 bits) by replacing the last letter with h (e.g. ah for ax).

Akin to the program counter register pc from RISC-V, x86 has an instruction pointer register ip. Like
the GPRs, it is extended to 32-bits with the e prefix and 64-bits with r prefix. ip is a special register since
it cannot be read and modified like a GPR (i.e. cannot use vanilla memory instructions).

There are other registers such as segment, EFLAGS, control, debug, test, floating point and many more.
However, the GPRs and the instruction pointer register are the main ones you will work with in this class.

Syntax

Although IA-32 specifies the registers and instructions, there are two different syntaxes: Intel and AT&T. In
this class, we will use the AT&T syntax because it is used by the GNU Assembler, the assembler for GCC
and thus the standard for Pintos and most Unix-like operating systems like Linux. The two syntaxes have
significant differences, so make sure to check which syntax is being used when referencing documentation.

Registers are preceded by a percent sign (e.g. %eax for eax). Immediates such as constants are preceded by
a dollar sign (e.g. $162 for the constant 162).

The general structure of a line of code is inst src, dest. For example, $movl %ebx, %eax will move the
contents of %ebx into %eax.

Addressing memory uses the synax of offset(base, index, scale) where base and index are registers,
and offset and scale are integers (scale can only take on values of 1, 2, 4, or 8). This accesses the data
at memory address base + index * scale + offset. All parameters are optional, though most cases you
will see will have base and offset. scale The following are some use cases of addressing memory with
different instructions.
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mov 8(%ebx), %eax Move contents from the address ebx + 8 into eax
mov %ecx, -4(%esi, %ebx, 8) Move contents in ecx into address esi + 8 * ebx - 4

One exception to the above syntax is when using the lea instruction which stands for ”load effective address”.
lea operates directly on the memory addresses themselves and not the contents contained in the memory
addresses. For instance, lea 8(%ebx), %eax would put the address ebx + 8 into eax, not the contents at
that address.

Each instruction also has a suffix that signifies the operand size. b means byte (8 bits), w means word
(16 bits), and l means long (32 bits). These are used when the the intended data size is ambiguous (e.g.
mov $0, (%esp)).

movb $0, (%esp) Zero out a single byte from the stack pointer
movw $0, (%esp) Zero out two bytes from the stack pointer
movl $0, (%esp) Zero out four bytes from the stack pointer

The suffixes aren’t always necessary when the intended data size can be inferred in some cases (e.g. using a
32-bit register as an operand means a 32-bit operation), but it is good practice to use them regardless.

A key difference of x86 from RISC-V is how much one instruction accomplishes due to its complicated
instruction set. For instance, let’s examine

Calling Convention

Calling convention is a procedure for how to call and return from functions. They specify stack manage-
ment, passing in parameters, any registers that need to be saved, stack management, returning values, and
more. There are two sets of rules: one for the caller of the function and one for the callee of the function.

Calling conventions are heavily tied into the language that’s being compiled. In this class, we will use the
calling convention defined by the i386 System V ABI as the default calling convention.

Caller

Before calling the function (i.e. prologue), the caller needs to

1. Save caller-saved GPRs (EAX, ECX, EDX) onto the stack if needed after the function call.

2. Push parameters onto the stack in reverse order (i.e. store first parameter at the lowest address). Add
necessary padding before the parameters to ensure a 16-byte alignment.

Then the caller calls the function by pushing the return address onto the stack and jumping to the function.
Once the function call returns (i.e. epilogue), the caller needs to

1. Remove the parameters from the stack.

2. Restore caller-saved GPRs (if any) from the prologue.

Callee

Before executing any function logic (i.e. prologue), the callee needs to

1. Push EBP onto the stack and set ebp to be the new esp (i.e. stack pointer after pushing the ebp).
This marks the start of a new stack frame.

2. Allocate stack space for any local variables (i.e. decrement esp).

3. Save callee-saved GPRs (ebx, edi, esi) onto the stack if used during the function call.

Then the callee performs the function logic. Before returning (i.e. epilogue), the callee needs too

1. Store the return value in eax.

2. Restore callee-saved GPRs (if any) from the prologue.
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3. Deallocate local variables. While subtracting the correct amount will technically work, a less error
prone way is to set esp to be the current ebp, effectively clearing the stack frame.

4. Restore caller’s ebp from the stack.

5. Return from the function by popping the return address pushed by the caller in its prologue and
jumping to it.

Instructions

There are a few commonly used instructions that will show up in nearly every assembly code due to the
calling convention.

Instruction Purpose Effective

pushl src Push src onto stack
subl $4, %esp

movl src, (%esp)

popl dest Pop from stack into dest
movl (%esp), dest

addl $4, %esp

call addr Push return address onto stack and jump to addr
pushl %eip

jump addr

leave Restore EBP and ESP to previous stack frame
movl %ebp, %esp

popl %ebp

ret Pop return address from stack and jump to it popl %eip

Keep in mind the effective column shows what the instruction is doing, but it may not exactly be what the
processor does. In fact, call and ret access EIP directly using mov which is not allowed.

Optimizations

When compiling with some optimizations using GCC (e.g. O3 flag), you may notice some violations of these
calling conventions, most notably the saving of the base pointer. This is because the base pointer is not
a necessity: the stack pointer is sufficient to address anything we need. Even when using RISC-V, the
equivalent frame pointer was not saved during calling convention.

Another notable omission is the 16-byte stack alignment which GCC omits by default even without any
optimizations. As a result, you will need to specify the -fno-ipa-stack-alignment flag when compiling to
get the necessary 16-byte alignment.

2.1 Concept Check

1. Between SP and BP, which has a higher memory address?

2. Write three different ways to clear the eax register (i.e. store a 0).

3. True or False: Right before the caller jumps to the desired function, the stack must be 16-byte aligned.
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2.2 Reverse Engineering

A Pythagorean triplet a < b < c satisfies the property a2 + b2 = c2. triplet.s on the right returns
the product of a Pythagorean triplet for which a + b + c = 1000. triplet.s has been assembled without
optimizations based on a complete version of triplet.c given on the left. Unused labels and directives have
been omitted in triplet.s for simplicity.

1 int main(void) {

2 for (int a = 1; _____________) {

3 int a2 = _____;

4 for (int b = ________________) {

5 int b2 = _____;

6 int c = ____________;

7 int c2 = _____;

8 if (_____________) {

9 return _________;

10 }

11 }

12 }

13 return 0;

14 }

triplet.c

1 main:

2 pushl %ebp

3 movl %esp, %ebp

4 subl $32, %esp

5 movl $1, -4(%ebp)

6 jmp .L2

7 .L7:

8 movl -4(%ebp), %eax

9 imull %eax, %eax

10 movl %eax, -12(%ebp)

11 movl -4(%ebp), %eax

12 movl %eax, -8(%ebp)

13 jmp .L3

14 .L6:

15 movl -8(%ebp), %eax

16 imull %eax, %eax

17 movl %eax, -16(%ebp)

18 movl $1000, %eax

19 subl -4(%ebp), %eax

20 subl -8(%ebp), %eax

21 movl %eax, -20(%ebp)

22 movl -20(%ebp), %eax

23 imull %eax, %eax

24 movl %eax, -24(%ebp)

25 movl -12(%ebp), %edx

26 movl -16(%ebp), %eax

27 addl %edx, %eax

28 cmpl %eax, -24(%ebp)

29 jne .L4

30 movl -4(%ebp), %eax

31 imull -8(%ebp), %eax

32 imull -20(%ebp), %eax

33 jmp .L5

34 .L4:

35 addl $1, -8(%ebp)

36 .L3:

37 cmpl $666, -8(%ebp)

38 jle .L6

39 addl $1, -4(%ebp)

40 .L2:

41 cmpl $333, -4(%ebp)

42 jle .L7

43 movl $0, %eax

44 .L5:

45 leave

46 ret
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1. What is the memory address of a relative to the base pointer?

2. What is the end condition for the outer loop using a?

3. What are the memory addresses of the rest of the local variables (a2, b, b2, c, c2) relative to the base
pointer?

4. Fill in the missing code for triplet.c.

ahttps://gcc.gnu.org/pub/gcc/summit/2003/Optimal%20Stack%20Slot%20Assignment.pdf
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2.3 Stack Frame

1 int p = 0;

2

3 int bar(int x, int y, int z) {

4 int w = x + y - z;

5 return w + 1;

6 }

7

8 void foo(int a, int b) {

9 p = a + b + bar(3, 4, 5);

10 }

foobar.c

1 p:

2 .zero 4

3 bar:

4 pushl %ebp

5 movl %esp, %ebp

6 subl $16, %esp

7 movl 8(%ebp), %edx

8 movl 12(%ebp), %eax

9 addl %edx, %eax

10 subl 16(%ebp), %eax

11 movl %eax, -4(%ebp)

12 movl -4(%ebp), %eax

13 addl $1, %eax

14 leave

15 ret

16 foo:

17 pushl %ebp

18 movl %esp, %ebp

19 pushl %ebx

20 subl $4, %esp

21 movl 8(%ebp), %edx

22 movl 12(%ebp), %eax

23 leal (%edx,%eax), %ebx

24 subl $4, %esp

25 pushl $5
26 pushl $4
27 pushl $3
28 call bar

29 addl $16, %esp

30 addl %ebx, %eax

31 movl %eax, p

32 nop

33 movl -4(%ebp), %ebx

34 leave

35 ret

1. Which lines of the code correspond to a caller/callee prologue/epilogue?

ahttps://godbolt.org/z/a5cdaonYG
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2. What does line 19 do in call.s? Why is it necessary?

3. Why is EDX not saved by foo before calling bar despite being used in bar?

4. Draw the stack frame and contents of relevant registers after executing line 16 of call.s.

ahttps://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/i386-and-x86_002d64-Options.html
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